首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
周琳  丁志华  俞晓峰 《光学学报》2005,25(9):181-1185
光学相十层析成像(光学相干层析成像术)的轴向分辨力由光源带宽和探测光束的聚焦条件共同决定。提高光学相干层析成像术轴向分辨力的方法主要基于带宽光源技术。提出了一种将变迹术与光学相十层析成像术相干门有机结合的方法来提高其轴向分辨力。通过适当形式的光瞳滤波器.使光学相干层析成像术系统轴向响应的主瓣宽度缩小到相干门之内,而其旁瓣则处于相干门之外.不对相干成像产生有效贡献。这样.就能在光源带宽不变的条件下,有效提高光学相十层析成像术的轴向分辨力,避免了采用宽带光源所带来的费用昂贵和系统复杂等缺陷。  相似文献   

2.
Optical coherence tomography (OCT) is a novel imaging modality based on low-coherence interferometry. This paper summarizes some of our latest work on the development of OCT where we have taken two approaches. In the first approach we have developed a phase-drift-suppression method for stable heterodyne detection in the presence of phase fluctuations. In the second approach we have concentrated on the development of two-dimensional heterodyne detection techniques for real-time imaging. A novel detection scheme has been proposed, which enables parallel heterodyne detection with a commercially available imager such as a charge-coupled-device camera. Meanwhile, a non-scanning OCT system configuration based on off-axis interferometry is being studied. Using a newly developed angular-dispersion imaging scheme, we show that the axial reflectance profile in OCT measurement can be detected instantaneously with a sensor array.  相似文献   

3.
Huber R  Adler DC  Fujimoto JG 《Optics letters》2006,31(20):2975-2977
We describe buffered Fourier domain mode locking (FDML), a technique for tailoring the output and multiplying the sweep rate of FDML lasers. Buffered FDML can be used to create unidirectional wavelength sweeps from the normal bidirectional sweeps in an FDML laser without sacrificing sweep rate. We also investigate the role of the laser source in dynamic range versus sensitivity performance in optical coherence tomography (OCT) imaging. Unidirectional sweep rates of 370 kHz over a 100 nm range at a center wavelength of 1300 nm are achieved. High-speed, swept-source OCT is demonstrated at record speeds of up to 370,000 axial scans per second.  相似文献   

4.
We improved our recently reported retinal OCT system based on transverse priority scanning to achieve high resolution in both the transverse and the axial directions. The implementation of an additional SLO channel enables precise on-line focusing. The system enables imaging of the human retinal cone mosaic off the foveal center without adaptive optics. We demonstrate, for what is believed to be the first time, cone mosaic imaging simultaneously in the scanning laser ophthalmoscope and optical coherence tomography (OCT) channels. OCT B-scan images demonstrate that the cone mosaic is observable in two adjacent layers. Furthermore, we present what are believed to be the first C-scan OCT images of the cone mosaic and show that the major part of light backscattered from below the photoreceptor layer is not guided back toward the pupil by the photoreceptors.  相似文献   

5.
Adaptive optics optical coherence tomography for retina imaging   总被引:1,自引:0,他引:1  
When optical coherence tomography (OCT) is used for human retina imaging, its transverse resolution is limited by the aberrations of human eyes. To overcome this disadvantage, a high resolution imaging system for living human retina, which consists of a time domain OCT system and a 37-elements adaptive optics (AO) system, has been developed. The AO closed loop rate is 20 frames per second, and the OCT has a 6.7-μm axial resolution. In this paper, this system is introduced and the high resolution imaging results for retina are presented.  相似文献   

6.
Xie T  Mukai D  Guo S  Brenner M  Chen Z 《Optics letters》2005,30(14):1803-1805
A fiber-optic-bundle-based optical coherence tomography (OCT) probe method is presented. The experimental results demonstrate this multimode optical fiber-bundle-based OCT system can achieve a lateral resolution of 12 microm and an axial resolution of 10 microm with a superluminescent diode source. This novel OCT imaging approach eliminates any moving parts in the probe and has a primary advantage for use in extremely compact and safe OCT endoscopes for imaging internal organs and great potential to be combined with confocal endoscopic microscopy.  相似文献   

7.
In Optical Coherence Tomography (OCT), both high axial and lateral resolutions are desired. While axial (z-axis) resolution is achieved by a broadband source, lateral (x-y axes) resolution is achieved by high NA lenses. However, high NA objectives result in decreased depth of focus (DOF). The small DOF makes it difficult to obtain single shot imaging of biological samples having large lateral dimension. In this work we incorporate special interfering phase mask allowing to extend the DOF of an OCT system and to allow imaging of samples without axial scanning.  相似文献   

8.
Wang Y  Li C  Wang RK 《Optics letters》2011,36(20):3975-3977
We report on a noncontact photoacoustic imaging (PAI) technique in which a low-coherence interferometer [(LCI), optical coherence tomography (OCT) hardware] is utilized as the acoustic detector. A synchronization approach is used to lock the LCI system at its highly sensitive region for photoacoustic detection. The technique is experimentally verified by the imaging of a scattering phantom embedded with hairs and the blood vessels within a mouse ear in vitro. The system's axial and lateral resolutions are evaluated at 60 and 30?μm, respectively. The experimental results indicate that PAI in a noncontact detection mode is possible with high resolution and high bandwidth. The proposed approach lends itself to a natural integration of PAI with OCT, rather than a combination of two separate and independent systems.  相似文献   

9.
Pan Y  Xie H  Fedder GK 《Optics letters》2001,26(24):1966-1968
An endoscopic optical coherence tomography (OCT) system based on a microelectromechanical mirror to facilitate lateral light scanning is described. The front-view OCT scope, adapted to the instrument channel of a commercial endoscopic sheath, allows real-time cross-sectional imaging of living biological tissue via direct endoscopic visual guidance. The transverse and axial resolutions of the OCT scope are roughly 20 and 10.2mum, respectively. Cross-sectional images of 500x1000 pixels covering an area of 2.9 mmx2.8 mm can be acquired at ~5 frames/s and with nearly 100-dB dynamic range. Applications in thickness measurement and bladder tissue imaging are demonstrated.  相似文献   

10.
Adaptive-optics ultrahigh-resolution optical coherence tomography   总被引:4,自引:0,他引:4  
Merging of ultrahigh-resolution optical coherence tomography (UHR OCT) and adaptive optics (AO), resulting in high axial (3 microm) and improved transverse resolution (5-10 microm) is demonstrated for the first time to our knowledge in in vivo retinal imaging. A compact (300 mm x 300 mm) closed-loop AO system, based on a real-time Hartmann-Shack wave-front sensor operating at 30 Hz and a 37-actuator membrane deformable mirror, is interfaced to an UHR OCT system, based on a commercial OCT instrument, employing a compact Ti:sapphire laser with 130-nm bandwidth. Closed-loop correction of both ocular and system aberrations results in a residual uncorrected wave-front rms of 0.1 microm for a 3.68-mm pupil diameter. When this level of correction is achieved, OCT images are obtained under a static mirror configuration. By use of AO, an improvement of the transverse resolution of two to three times, compared with UHR OCT systems used so far, is obtained. A significant signal-to-noise ratio improvement of up to 9 dB in corrected compared with uncorrected OCT tomograms is also achieved.  相似文献   

11.
商在明  丁志华  王玲  刘勇 《物理学报》2011,60(12):124204-124204
光学相干层析成像的轴向分辨率和横向分辨率是互为独立的,其轴向分辨率由系统光源带宽和探测光束的聚焦条件共同决定,而横向分辨率由系统样品臂的聚焦条件决定. 提高光学相干层析成像的轴向分辨率的方法主要基于宽带光源技术以及变迹术与相干门相结合的方法,而这些方法对于横向分辨率并没有提高. 提出了一种通过光程编码与相干合成的方法,可以同时提高其轴向分辨率和横向分辨率. 通过在光学相干层析成像系统的样品臂中加入光程编码分束器形成多种对应不同光程延迟的有效响应函数,基于光学相干层析成像术固有的光程分辨能力可以得到同一样品对应于不同有效响应函数的多幅图像. 通过数字控制不同有效响应函数的相对贡献对其进行相干合成,可以同时实现轴向和横向的超分辨效果. 与以前的方法相比,光程编码与相干合成方法简单易行、成本低廉,不仅可以避免系统复杂和价格昂贵等不足,而且可以同时较大幅度地提高系统的轴向分辨率和横向分辨率. 关键词: 光学相干层析成像 轴向超分辨 横向超分辨 光程编码  相似文献   

12.
We describe high-speed Fourier domain optical coherence tomography (OCT) using optical demultiplexers (ODs) for spectral dispersion. The OD enables separation of a narrow spectral band of 14 GHz (0.11 nm) from a broadband incident light at 256 different frequencies in 25.0 GHz intervals centered at 192.2 THz (1559.8 nm). OCT imaging of 60,000,000 axial scans per second was achieved through parallel signal acquisition using 256 balanced photoreceivers to simultaneously detect all the output signals from the ODs in a Fourier domain OCT system. OCT imaging at a 16 kHz frame rate, 1100 A-lines per frame, 3 mm depth range, and 23 microm resolution was demonstrated using a resonant scanner for lateral scanning.  相似文献   

13.
We designed and fabricated an arrayed-waveguide grating (AWG) in silicon oxynitride as a spectrometer for spectral domain optical coherence tomography (SD-OCT). The AWG has a footprint of only 3.0 cm × 2.5 cm, operates at a center wavelength of 1300 nm, and has 78 nm free spectral range. OCT measurements are performed that demonstrate imaging up to a maximum depth of 1 mm with an axial resolution of 19 μm, both in agreement with the AWG design parameters. Using the AWG spectrometer combined with a fiber-based SD-OCT system, we demonstrate cross-sectional OCT imaging of a multilayered scattering phantom.  相似文献   

14.
The axial resolution of optical coherence tomography (OCT) is determined by the coherence length of the light source. We demonstrate for the first time high-resolution OCT of biological tissue using a halogen lamp as the light source for a low coherence interferometer. High-resolution OCT imaging with 3.5 μm resolution was performed successfully for onion and porcine skin, although the coherence light power for illumination of a sample is as small as 100 nW.  相似文献   

15.
A distally actuated, rotational-scanning micromotor endoscope catheter probe is demonstrated for ultrahigh-resolution in vivo endoscopic optical coherence tomography (OCT) imaging. The probe permits focus adjustment for visualization of tissue morphology at varying depths with improved transverse resolution compared with standard OCT imaging probes. The distal actuation avoids nonuniform scanning motion artifacts that are present with other probe designs and can permit a wider range of imaging speeds. Ultrahigh-resolution endoscopic imaging is demonstrated in a rabbit with <4-microm axial resolution by use of a femtosecond Cr:forsterite laser light source. The micromotor endoscope catheter probe promises to improve OCT imaging performance in future endoscopic imaging applications.  相似文献   

16.
We report a photonic crystal fiber (PCF)-based optical coherence tomography (OCT) system, in which conventional single-mode fiber for the transmission line and the fiber coupler for the beam splitter/combiner are replaced with PCF and PCF coupler. The PCF coupler fabricated using the fused biconical tapered (FBT) method showed a nearly flat coupling ratio over a broad spectral bandwidth of 400 nm, which provided an axial resolution of 3-μm for OCT imaging. With a white-light source, the 8-μm thick air gap between two stacked cover glasses was measured, and with a conventional superluminecent diode (SLD) source, the in vitro images of rat eye and Misgurnus mizolepis skin were successfully obtained. The PCF and PCF coupler might enable a white-light as the source for the cost effective and high-resolution OCT system.  相似文献   

17.
A compact, low-cost, prismless Ti:Al2O3 laser with 176-nm bandwidth (FWHM) and 20-mW output power was developed. Ultrahigh-resolution ophthalmic optical coherence tomography (OCT) ex vivo imaging in an animal model with approximately 1.2-microm axial resolution and in vivo imaging in patients with macular pathologies with approximately 3-microm axial resolution were demonstrated. Owing to the pump laser, this light source significantly reduces the cost of broadband OCT systems. Furthermore, the source has great potential for clinical application of spectroscopic and ultrahigh-resolution OCT because of its small footprint (500 mm x 180 mm including the pump laser), user friendliness, stability, and reproducibility.  相似文献   

18.
Noninvasive in vivo functional optical imaging of the intact retina is demonstrated by using high-speed, ultrahigh-resolution optical coherence tomography (OCT). Imaging was performed with 2.8 microm resolution at a rate of 24,000 axial scans per second. A white-light stimulus was applied to the dark-adapted rat retina, and the average reflectivities from different intraretinal layers were monitored as a function of time. A 10%-15% increase in the average amplitude reflectance of the photoreceptor outer segments was observed in response to the stimulus. The spatial distribution of the change in the OCT signal is consistent with an increase in backscatter from the photoreceptor outer segments. To our knowledge, this is the first in vivo demonstration of OCT functional imaging in the intact retina.  相似文献   

19.
Optical coherence tomography (OCT) and terahertz pulsed imaging (TPI) are two powerful techniques allowing high quality cross-sectional images from within scattering media to be obtained non-destructively. In this paper, we report experimental results of using OCT and TPI for quantitatively characterizing pharmaceutical tablet coatings in the thickness range of 10-140 μm. We found that the spectral OCT system developed in-house has an axial resolution of 0.9 μm, and is capable of quantifying very thin coatings in the range of 10-60 μm. The upper limit of 60 μm within the tablet coating and core is owed to the strong scattering of OCT light, which has relatively short wavelengths in the range of 0.5-1.0 μm. On the other hand, TPI utilizes terahertz radiation that has substantially long wavelengths in the range of hundreds of microns, and thus is less prone to the scattering problem. Consequently TPI has been demonstrated to be able to quantify thicker coatings in the range of 40-140 μm and beyond. We concluded that OCT and TPI are two complementary analytical techniques for non-destructive and quantitative characterization of pharmaceutical tablet coatings.  相似文献   

20.
A high-speed (47,000 A-scans/s), ultrahigh axial resolution Fourier domain optical coherence tomography (OCT) system for retinal imaging at approximately 1060 nm, based on a 1024 pixel linear array, 47 kHz readout rate InGaAs camera is presented. When interfaced with a custom superluminescent diode (lambda(c) = 1020 nm, Deltalambda = 108 nm, Pout = 9 mW), the system provides 3.3 microm axial OCT resolution at the surface of biological tissue, approximately 4.5 microm in vivo in rat retina, approximately 5.7 microm in vivo in human retina, and 110 dB sensitivity for 870 microW incident power and 21 mus integration time. Retinal tomograms acquired in vivo from a human volunteer and a rat animal model show clear visualization of all intraretinal layer and increased penetration into the choroid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号