首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Farkas E  Csóka H  Gama S  Santos MA 《Talanta》2002,57(5):935-943
Equilibrium studies based on pH-potentiometric and spectrophotometric measurements as well as some theoretical simulations are reported for the complexes of Mo(VI) with a dihydroxamate type siderophore analogue, the piperazine-1,4-bis-(N-methyl-acetohydroxamic acid) (PIPDMAHA). It has been found that the complexation process starts below pH 2 and that PIPDMAHA forms more stable O,O-hydroxamate bis-chelated complexes with Mo(VI) than any of the formerly studied dihydroxamic acids. The experimental data were fitted with two complexation models based either on dinuclear or on mononuclear species. However, ESI-MS showed that the dimmer is much more abundant than the monomer. This feature was further suggested by theoretical simulation studies, which indicated the dimeric species is more stable than the monomeric one.  相似文献   

2.
Monooxo Mo(V) complexes of a N2O heteroscorpionate ligand designated (L10O) are found to exist as isolable cis and trans isomers. We have been able to trap the kinetically labile cis isomer and follow its isomerization to the thermodynamically more stable trans form. We have also followed the kinetics of isomerization between the cis and trans isomers of the corresponding dioxo Mo(VI) and W(VI) species. Here the trans is the labile isomer that spontaneously converts to the thermodynamically more stable cis. It is observed that at 60 degrees C in DMSO the Mo(VI) complex isomerizes approximately 6.5 times faster than the Mo(V) and nearly 5 times faster than the corresponding W(VI) analogs. The temperature dependence to the kinetics of the Mo(V) and Mo(VI) isomerizations give activation parameters that are similar for both oxidation states and consistent with those previously observed in [(L1O)MoOCl2] suggesting a similar twist mechanism is operating in all cases. Thus there are oxidation state, metal ion and donor atom dependent differences in isomeric stability that could have significant implications for understanding the mechanisms of both enzymatic and nonenzymatic oxo atom transfer reactions catalyzed by complexes of Mo, W and Re.  相似文献   

3.
Both dioxo Mo(VI) and mono-oxo Mo(V) complexes of a sterically restrictive N2O heteroscorpionate ligand are found to exist as cis and trans isomers. The thermodynamically stable isomer differs for the two oxidation states, but in each case, we have isolated the kinetically labile isomer and followed its isomerization to the thermodynamically stable form. The Mo(VI) complex is more stable in the cis geometry and isomerizes more than 6 times faster than the Mo(V) complex, which prefers the trans geometry. In OAT reactions with PPh3, the trans isomer of the dioxo-Mo(VI) reacts approximately 20 times faster than the cis isomer. Thus, there are both oxidation state and donor atom dependent differences in isomeric stability and reactivity that could have significant functional implications for molybdoenzymes such as DMSO reductase.  相似文献   

4.
Poirier JM  Verchere JF 《Talanta》1979,26(5):349-356
The complexes formed from tungsten(VI) and chloranilate (C(2-)) and bromanilate (B(2-)) have been studied in aqueous solution and as solids, by ultraviolet, visible and infrared spectroscopy. At pH 3-4, the complexes have the composition ligand:tungsten = 2. At pH < 2, only the 1:1 complexes are found. The two reagents allow the spectrophotometric determination of W(VI) (lambda, = 335 nm for H(2)C and 340 nm for H(2)B) in 1.4M HClO(4), at concentrations of about 1 mg/l. The conditional stability constants of the two 1:1 complexes in this medium have been calculated. The tungsten complexes are more stable than the corresponding molybdenum complexes, and the complexes of B(2-) are more stable than the complexes of C(2-) [with W(VI) and Mo(VI)]. It is shown that this result is due to the difference between the pK(1), values of the acids H(2)B and H(2)C. The infrared spectra of the complexes of B(2-) and C(2-) with Mo(VI) and W(VI) are discussed in order to define the interaction between the metal ions and the ligands.  相似文献   

5.
The hexadecanuclear, mixed-valence cluster [Mo(16)O(42)(OH)(2)(3-iPrC(3)H(3)N(2))(12)].H(2)O (1), has been synthesized and characterized by X-ray crystallography, IR spectroscopy and mass spectrometry. The C(2)-symmetric complex consists of a cubane Mo(VI) (4)O(4) "jewel" held in a 10-point "setting" comprised of five dinuclear Mo(V) units tethered together by two tetrahedral Mo(VI) centers. The dinuclear units are ligated by twelve 3-isopropylpyrazole units that interact with the Mo--O framework through a network of hydrogen bonds. Structural parameters, charge requirements, and bond valence sum analyses support the assignment of +5 and +6 oxidation states to the dinuclear and cubane/tetrahedral Mo centers, respectively. Space filling models reveal that the pyrazole groups coat much of the surface of the molecule, apart from a number of oxo-rich seams that trace a chiral pattern across the surface. Complex 1 exhibits a unique structure that combines moieties generally atypical of polyoxometalates, viz., a Mo cubane containing only two terminal oxo ligands, and three distinct Mo(V) (2) units (including a 5-coordinate Mo center) tethered into a 10-point "setting" by tetrahedral Mo(VI) centers.  相似文献   

6.
We report a series of calix[4]arene Mo(VI) dioxo complexes M2RC4MoO2 (M = alkali metal, R = H or Bu(t)) that were fully characterized by NMR, X-ray, IR, UV/vis, and elemental analysis. Molybdocalix[4]arene structures can be controlled via lower rim deprotonation, groups at para positions of calix[4]arene, and alkali metal counterions. Mono deprotonation at the lower rim leads to calix[4]arene Mo(VI) monooxo complexes RC4MoO (R = H, Bu(t), or allyl), and full deprotonation gives rise to calix[4]arene Mo(VI) dioxo complexes. Structural studies indicate that HC4 Mo(VI) dioxo complexes easily form polymeric structures via cation-pi interaction and coordination between different calixarene units. However, Bu(t)C4 Mo(VI) dioxo complexes tend to form dimers or tetramers due to steric hindrance of the tert-butyl groups at para positions in calixarene. The structures of the reduced side products A and C were determined by X-ray diffraction studies. The mechanism of RC4MoO formation from the reaction of calixarene monoanions with MoO2Cl2 appears to include the addition of a calixarene -OH group across a Mo=O bond.  相似文献   

7.
The influence of three exogenous ligands (acetate, formate and carbonate) on the condensation process of the [Mo2O4]2+ dioxocation with the [O3PCH2PO3](4-) group has been investigated. Four cyclic or bicyclic compounds have been isolated and characterized by X-ray diffraction studies. Two closely related acetato and formato ovoidal duodecanuclear compounds, Na24[Na4(H2O)6[(Mo2O4)10(O3PCH2PO3)10(CH3COO)8(H2O)4]].103H2O (1) and Na28[Na2[(Mo2O4)10(O3PCH2PO3)10(HCOO)10]].110H2O (2), respectively, have been obtained. Their structures can be described as two interconnected nonequivalent wheels, delimiting a large cavity. When the condensation is performed in similar conditions but replacing carboxylato groups by carbonato ligands, the ellipsoidal octanuclear Na11[Na(H2O)2[(Mo2O4)4(O3PCH2PO3)4(CO3)2]].70H2O (3) compound is isolated. 31P NMR spectroscopic studies have shown that complexes 1 and 3 are stable in solution at room temperature. Nevertheless, on heating an aqueous solution of 3, the Na8[(Mo2O4)3(O3PCH2PO3)3(MoO4)].18H2O (4) complex, free of carbonato groups, is obtained. 4 is a hexanuclear Mo(V) wheel encapsulating a tetrahedral [Mo(VI)O4](2-) anion. Its rational synthesis using a controlled Mo(V)/Mo(VI) ratio is also presented.  相似文献   

8.
Cis-dioxo-metal complex ( NH3CH2CH2NH2 ) 2.5 [ Mo0.5^(V)W0.5^(VI)O2 ( OC6H4O ) 2] 1 was obtained by the reaction of tetra-butyl ammonium hexamolybdotungstate with 1, 2-dihydroxybenzene in the mixed solvent of CH3OH, CH3CN and ethylenediamine,and characterized by X-ray diffraction, UV-vis and EPR analysis. Compared with its analogous complexes (NH3CH2CH2NH2)3[Mo^(V)O2(OC6H40)2] 2 and (NH3CH2CH2NH2)2[W^(VI)O2(OC6H4O)2] 3, the results show that tungsten(VI) is less active in redox than molybdenum (VI) and that the change of the valence induced by substitution of W(VI) for Mo(V) in EMO2(OC6H40)2]n- does not influence the coordination geometry of the complex anion in which the metal center exhibits distorted octahedral coordination with cis-dioxo catechol. The responses to EPR of complexes 1 and 2 are active but complex 3 is silent,and the UV-vis spectra exhibited by the three complexes are obvious different because of the different electronic configuration between the central Mo(V) and W(VI) ions in the complexes.It is noteworthy that complexes 1 and 2 have the similar EPR signal to flavoenzyme, suggesting that the three complexes have the same coordination geometry feature with the co-factor of flavoenzyme.  相似文献   

9.
Treatment of [MoO2(eta2-Pz)2] (Pz = 3,5-di-tert-butylpyrazolate) with the diketiminate ligand NacNacH (NacNac = CH[C(Me)NAr]2-, Ar = 2,6-Me2C6H3) at 55 degrees C leads under reduction of the metal to the formation of the dimeric molybdenum(V) compound [{MoO2(NacNac)}2] (1). The compound was characterized by spectroscopic means and by X-ray crystal structure analysis. The dimer consists of a [Mo2O4]2+ core with a short Mo-Mo bond (2.5591(5) A) and one coordinated diketiminate ligand on each metal atom. The reaction of [MoO2(eta2-Pz)2] with NacNacH in benzene at room temperature leads to a mixture of 1 and the monomeric molybdenum(VI) compound [MoO2(NacNac)(eta2-Pz)] (2). From such solutions, yellow crystals of 2 suitable for X-ray structural analysis were obtained revealing the coordination of one bidentate NacNac and one eta2-coordinate Pz ligand. This renders the two oxo groups inequivalent. Further high oxidation state molybdenum compounds containing the NacNac ligand were obtained by the reaction of [Mo(NAr)2Cl2(dme)] (Ar = 2,6-Me2C6H3) and [Mo(N-t-Bu)2Cl2(dme)] (dme = dimethoxyethane) with 1 equiv of the potassium salt NacNacK forming [Mo(NAr)2Cl(NacNac)] (3) and [Mo(N-t-Bu)2Cl(NacNac)] (4), respectively, in good yields. The X-ray structure analysis of 3 revealed a penta-coordinate compound where the geometry is best described as trigonal-bipyramidal.  相似文献   

10.
Atom transfer reactions have been employed to convert Tp(i)(Pr)MoO(2)(OAr) into monomeric cis-oxosulfido-Mo(VI) and dimeric mu-disulfido-Mo(V) species, [Tp(i)(Pr)MoOS(OAr)](n)() (Tp(i)(Pr) = hydrotris(3-isopropylpyrazol-1-yl)borate; OAr = phenolate or naphtholate derivative; n = 1 and 2, respectively). Dark red, monomeric Tp(i)(Pr)MoOS(OAr) complexes contain distorted octahedral cis-oxosulfido-Mo(VI) centers, with d(Mo=O) = 1.692(5) A, d(Mo=S) = 2.132(2) A, and angle(O=Mo=S) = 103.68(16) degrees for the 2-sec-butylphenolate derivative. Dark red-purple, dimeric [Tp(i)(Pr)MoOS(OAr)](2) complexes undergo S-S bond cleavage forming monomeric oxosulfido-Mo(VI) species in solution. In the solid state, the 3,5-di-tert-butylphenolate derivative exhibits a centrosymmetric structure, with distorted octahedral anti oxo-Mo(V) centers bridged by a disulfido-kappaS,kappaS' ligand. Hydrolysis of the oxosulfido-Mo(VI) complexes results in the formation of [Tp(i)(Pr)MoO](2)(mu-S(2))(mu-O). In anaerobic solutions, certain oxosulfido-Mo(VI) complexes convert to molybdenyl complexes bearing bidentate 2-mercaptophenolate or related naphtholate ligands formed via intramolecular attack of the sulfido ligand on a coligand C-H group. The oxosulfido-Mo(VI) complexes serve as precursors to biologically relevant Mo(V) and heterobimetallic MoO(mu-S)Cu species and undergo a range of biomimetic reactions.  相似文献   

11.
用聚合表面活性剂作增敏试剂分光光度测定钼和钨   总被引:2,自引:0,他引:2  
刘昆元  俞汝勤 《化学学报》1987,45(6):584-589
采用表面活性剂的分光光度分析法应用日趋广泛。这方面的研究工作虽极活跃,但较多工作限于已有经典表面活性剂的研究与应用,为分析化学的特定需要设计与合成新型表面活性剂的研究尚少。作者曾用环氧氯丙烷和长链烷基叔胺合成了以聚乙二醇为主链含有若干个带长链烷基的季氮支链的低聚合表面活性剂——聚(氧化丙烯)-α-十八烷基二甲基氯化铵(PPOSA)。实验表明,这类表面活性剂兼有阳离子和非离子表面活性剂的某些特性。本文  相似文献   

12.
A four-coordinate hydrogen atom has been unambiguously located, by single-crystal neutron diffraction for the first time, in the center of the tetrahedral metal complex Y4H8(Cp')4(THF) [Cp'=C5Me4(SiMe3)]. The core of the molecule consists of a tetranuclear cluster with one interstitial, one face-bridging, and six edge-bridging hydride ligands. The compound was prepared via the reaction of YCp'(CH2SiMe3)2(THF) with gaseous H2. Neutron data were collected on a 4 mm3 crystal at the Quasi-Laue diffractometer VIVALDI at ILL (Grenoble)1a and on an 8 mm3 crystal at the SXD diffractometer at ISIS (Didcot). The final agreement factor is R = 8.9% for 4171 reflections. The existence of 4-coordinate hydrogen now completes the series of high-connectivity hydride ligands located in the interstitial cavities of molecular cluster complexes. We had previously reported the existence of 6-coordinate hydrogen in the octahedral cavity of [HCo6(CO)15]- in 1979, and 5-coordinate hydrogen in the square pyramidal cavities of [H2Rh13(CO)24]3- in 1997, also via single-crystal neutron analyses.  相似文献   

13.
Reaction of Na(2)Mo(VI)O(4) x 2H(2)O with (NH(4))(2)SO(3) in the mixed-solvent system H(2)O/CH(3)CN (pH = 5) resulted in the formation of the tetranuclear cluster (NH(4))(4)[Mo(4)(VI)SO(16)] x H(2)O (1), while the same reaction in acidic aqueous solution (pH = 5) yielded (NH(4))(4)[Mo(5)(VI)S(2)O(21)] x 3H(2)O (2). Compound {(H(2)bipy)(2)[Mo(5)(VI)S(2)O(21)] x H(2)O}(x) (3) was obtained from the reaction of aqueous acidic solution of Na(2)Mo(VI)O(4) x 2H(2)O with (NH(4))(2)SO(3) (pH = 2.5) and 4,4'-bipyridine (4,4'-bipy). The mixed metal/sulfite species (NH(4))(7)[Co(III)(Mo(2)(V)O(4))(NH(3))(SO(3))(6)] x 4H(2)O (4) was synthesized by reacting Na(2)Mo(VI)O(4) x 2H(2)O with CoCl(2) x 6H(2)O and (NH(4))(2)SO(3) with precise control of pH (5.3) through a redox reaction. The X-ray crystal structures of compounds 1, 2, and 4 were determined. The structure of compound 1 consists of a ring of four alternately face- and edge-sharing Mo(VI)O(6) octahedra capped by the trigonal pyramidal sulfite anion, while at the base of the Mo(4) ring is an oxo group which is asymmetrically shared by all four molybdenum atoms. Compound 3 is based on the Strandberg-type heteropolyion [Mo(5)(VI)S(2)O(21)](4-), and these coordinatively saturated clusters are joined by diprotonated 4,4'-H(2)bipy(2+) through strong hydrogen bonds. Compound 3 crystallizes in the chiral space group C2. The structure of compound 4 consists of a novel trinuclear [Co(III)Mo(2)(V)SO(3)(2-)] cluster. The chiral compound 3 exhibits nonlinear optical (NLO) and photoluminescence properties. The assignment of the sulfite bands in the IR spectrum of 4 has been carried out by density functional calculations. The cobalt in 4 is a d(6) octahedral low-spin metal atom as it was evidenced by magnetic susceptibility measurements, cw EPR, BVS, and DFT calculations. The IR and solid-state UV-vis spectra as well as the thermogravimetric analyses of compounds 1-4 are also reported.  相似文献   

14.
Two O,S-donor ligands, hydroxythiopyrone and hydroxythiopyridinone derivatives, were developed and studied, as well as the corresponding O,O-derivatives, with a view to their potential pharmacological applications as xanthine oxidase (XO) inhibitors. The biological assays revealed that the O,S-ligands present high inhibitory activity towards XO (nanomolar order, close to that of the pharmaceutical drug allopurinol), in contrast to the corresponding O,O-analogues. Due to the biomedical relevance of this molybdenum-containing enzyme, the corresponding Mo(VI) complexes were studied both in solution and in the solid state, aimed at identifying the source of the biological properties. The solution studies showed that, in comparison with the O,O-analogues, the Mo(VI) complexes with the O,S-ligands present some stabilization, which is even more pronounced for the reduced Mo(IV) species. The crystal structures of the Mo(VI) complexes with the hydroxythiopyrone revealed good flexibility of the coordination modes, with two structural isomers and two polymorphic forms for a mononuclear and a binuclear species, respectively. These results give some support to mechanistic proposals for the XO inhibition involving the interaction of the thione group with the molybdenum cofactor, thus indicating a role of the sulfur atom in the XO inhibition.  相似文献   

15.
A simple, selective and sensitive spectrophotometric method has been developed for the individual and simultaneous determination of Ti(IV) and Mo(VI) using resacetophenone p-hydroxybenzoylhydrazone (RAPHBH) in presence of Triton X-100, without any prior separation. Beer's law is obeyed between 0.13-1.2 microg mL-1 and 0.18-1.90 microg mL-1 concentration of Ti(IV) and Mo(VI) at 455 nm and 405 nm, respectively. The molar absorptivity and Sandell's sensitivity of the coloured complexes at pH 3.0 are 3.1x10(4) L mol-1 cm-1, 4.2x10(4) L mol-1 cm-1, and 1.6 ng cm-2, 2.3 ng cm-2 for Ti(IV) and Mo(VI), respectively. The stoichiometry of the complexes were found to be 1:2 and 1:1 (metal:ligand) for Ti(IV) and Mo(VI), respectively. These metal ions interfere with the determination of each other in zero-order spectrophotometry. The first derivative spectra of these complexes permitted a simultaneous determination of Ti(IV) and Mo(VI) at zero crossing wavelengths of 500.0 nm and 455.0 nm, respectively. The effect of foreign ions in the determination of Ti(IV) and Mo(VI) were investigated. The proposed method has been successfully applied for the determination of titanium and molybdenum in standard alloy steel, mineral and soil samples.  相似文献   

16.
We report the synthesis and characterization of eight new Mo, W, or V-containing polyoxometalate (POM) bisphosphonate complexes with metal nuclearities ranging from 1 to 6. The compounds were synthesized in water by treating Mo(VI), W(VI), V(IV), or V(V) precursors with biologically active bisphosphonates H(2)O(3)PC(R)(OH)PO(3)H(2) (R = C(3)H(6)NH(2), Ale; R = CH(2)S(CH(3))(2), Sul and R = C(4)H(5)N(2), Zol, where Ale = alendronate, Sul = (2-Hydroxy-2,2-bis-phosphono-ethyl)-dimethyl-sulfonium and Zol = zoledronate). Mo(6)(Sul)(2) and Mo(6)(Zol)(2) contain two trinuclear Mo(VI) cores which can rotate around a central oxo group while Mo(Ale)(2) and W(Ale)(2) are mononuclear species. In V(5)(Ale)(2) and V(5)(Zol)(2) a central V(IV) ion is surrounded by two V(V) dimers bound to bisphosphonate ligands. V(6)(Ale)(4) can be viewed as the condensation of one V(5)(Ale)(2) with one additional V(IV) ion and two Ale ligands, while V(3)(Zol)(3) is a triangular V(IV) POM. These new POM bisphosphonates complexes were all characterized by single-crystal X-ray diffraction. The stability of the Mo and W POMs was studied by (31)P NMR spectroscopy and showed that all compounds except the mononuclear Mo(Ale)(2) and W(Ale)(2) were stable in solution. EPR measurements performed on the vanadium derivatives confirmed the oxidation state of the V ions and evidenced their stability in aqueous solution. Electrochemical studies on V(5)(Ale)(2) and V(5)(Zol)(2) showed reduction of V(V) to V(IV), and magnetic susceptibility investigations on V(3)(Zol)(3) enabled a detailed analysis of the magnetic interactions. The presence of zoledronate or vanadium correlated with the most potent activity (IC(50)~1-5 μM) against three human tumor cell lines.  相似文献   

17.
Summary The HPLC behaviours of Cr(VI), Mo(VI) and V(V) peroxo complexes in a H2O2-8-hydroxyquinolinebipyridine system were studied by using pre-column in combination with on-column derivatisation. The chromatograms of Cr(VI), Mo(VI) and V(V) show them to be CrO2– 4, oxine-Mo peroxo and oxine-V-bipyridine peroxo complexes, respectively, and were used for the separation, identification and determination of Cr(VI), Mo(VI) and V(V) using acetonitrile-water as mobile phase. The calibration curves obtained for 20 l injections were linear for 1.4–7.0 mg/l Cr, 1.3–6.5 mg/l Mo and 0.7–3.4 mg/l V. The relative standard deviations were between 6 and 10%.
HPLC-Analyse von Cr, V und Mo unter Verwendung von Vorsäulen- in Kombination mit Säulenderivatisierung durch Oxin, Bipyridin und H2O2
  相似文献   

18.
Synthesis and X-Ray Structure Analysis of Bis(2,2,6,6-tetramethylpiperidine-1-oxidato-O,N)molybdenum (VI) Dioxide The title compound ( 1 ) was synthesized by a photoreaction of the 2,2,6,6-tetramethylpiperidin-1-oxyl [TMPO] radical with Mo(CO)6 and characterized by an X-ray structure analysis as (TMPO)2MoO2 complex. In the coordinatively unsaturated 16 electron compound of mm2 symmetry the MoVI is coordinated nearly tetrahedrally by the four ligands, the TMPO? ligands being O,N coordinated. The Mo? O, Mo? N, and Mo?O distances are 1.972(3), 2.198(3), and 1.711(2) Å respectively; the N? O distances are 1.436(4) Å. The stereochemistry of the Mo coordination is the same as in other (R2NO)2MoO2 complexes.  相似文献   

19.
Synthesis, characterization, and epoxidation chemistry of four new dioxomolybdenum(VI) complexes [MoO(2)(L)(2)] (1-4) with aryloxide-pyrazole ligands L = L1-L4 is described. Catalysts 1-4 are air and moisture stable and easy to synthesize in only three steps in good yields. All four complexes are coordinated by the two bidentate ligands in an asymmetric fashion with one phenoxide and one pyrazole being trans to oxo atoms, respectively. This is in contrast to the structure found for the related aryloxide-oxazoline coordinated Mo(VI) dioxo complex 5. This was confirmed by the determination of the molecular structures of complexes 1-3 by X-ray diffraction analyses. Compounds 1-4 show high catalytic activities in the epoxidation of various olefins. Cyclooctene (S1) is converted to its epoxide with high activity, whereas the epoxidation of styrene (S2) is unselective. Internal olefins (S3 and S4) are also acceptable substrates, as well as the very challenging olefin 1-octene (S5). Catalyst loading can be reduced to 0.02 mol % and the catalyst can be recycled up to ten times without significant loss of activity. Supportive DFT calculations have been carried out in order to obtain deeper insights into the electronic situation around the Mo atom.  相似文献   

20.
The complexes cis-Tp(iPr)Mo(VI)O2(OAr) (Tp(iPr) = hydrotris(3-isopropylpyrazol-1-yl)borate, -OAr = phenolate or naphtholate derivative) are formed upon metathesis of Tp(iPr)MoO2Cl and HOAr/NEt3 in dichloromethane. The orange, diamagnetic dioxo-Mo(VI) complexes exhibit strong nu(MoO2) IR bands at ca. 930 and 905 cm(-1) and NMR spectra indicative of C(s) symmetry. They undergo electrochemically reversible, one-electron reductions at potentials in the range -0.714 to -0.855 V vs SCE (in MeCN) and react with PEt3 to produce Tp(iPr)Mo(IV)O(OAr)(OPEt3). The green, diamagnetic oxo-Mo(IV) complexes display a single nu(MoO) IR band at ca. 950 cm(-1) and exhibit NMR spectra indicative of C1 symmetry. The crystal structures of eight dioxo-Mo(VI) complexes have been determined to assess the degree of frontal (O3-donor face) steric congestion at the Mo center, to identify complexes amenable to conversion into monomeric oxosulfido-Mo(VI) derivatives. The complexes display distorted octahedral geometries, with a cis arrangement of terminal oxo ligands, with d(Mo=O)av = 1.694 A and angle(MoO2)av = 103.4 degrees. Maximal frontal steric congestion is observed in the 2-phenolate derivatives, and these are identified as precursors for strictly monomeric(solid and solution state) oxosulfido-Mo(VI) counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号