首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydride complexes [FeH(N-N)P3]BPh4 (1, 2) [N-N = 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen); P = P(OEt)4, PPh(OEt)2, and PPh2OEt] were prepared by allowing FeCl2(N-N) to react with phosphite in the presence of NaBH4. The hydrides [FeH(bpy)2P]BPh4 (3) [P = P(OEt)3 and PPh(OEt)2] were prepared by reacting the tris(2,2'-bipyridine) [Fe(bpy)3]Cl2.5H2O complex with the appropriate phosphite in the presence of NaBH4. The protonation reaction of 1 and 2 with acid was studied and led to thermally unstable (above -20 degrees C) dihydrogen [Fe(eta2-H2)(N-N)P3]2+ (4, 5) derivatives. The presence of the H2 ligand is indicated by short T(1 min) values (3.1-3.6 ms) and by J(HD) measurements (31.2-32.5 Hz) of the partially deuterated derivatives. Carbonyl [Fe(CO)(bpy)[P(OEt)3]3](BPh4)2 (6) and nitrile [Fe(CH3CN)(N-N)P3](BPh4)2 (7, 8) [N-N = bpy, phen; P = P(OEt)3 and PPh(OEt)2] complexes were prepared by substituting the H2 ligand in the eta2-H2 4, 5 derivatives. Aryldiazene complexes [Fe(ArN=NH)(N-N)P3](BPh4)2 (9, 10, 11) (Ar = C6H5, 4-CH3C6H4) were also obtained by allowing hydride [FeH(N-N)P3]BPh4 derivatives to react with aryldiazonium cations in CH2Cl2 at low temperature.  相似文献   

2.
Chloro-complexes [OsCl(N-N)P3]BPh4 (12) [N-N=2,2-bipyridine (bpy) and 1,10-phenanthroline (phen); P=P(OEt)3 and PPh(OEt)2] were prepared by allowing OsCl4(N-N) to react with zinc dust in the presence of phosphites. Treatment of the chloro-complexes 12 with NaBH4 yielded, in the case of bpy, the hydride [OsH(bpy)P3]BPh4 (4) derivatives. Mono-phosphite [OsCl(bpy)2P]BPh4 (3) complexes were also prepared by reacting the [OsCl2(bpy)2]Cl compound with zinc dust in the presence of phosphite. Protonation reaction of the hydride [OsH(bpy)P3]+ (4) cations with Brønsted acid was studied and led to thermally unstable (above 0 °C) dihydrogen [Os(η2-H2)(bpy)P3]2+ (4*) derivatives. The presence of the H2 ligand is supported by variable-temperature NMR spectra and T1min measurements. Carbonyl [Os(CO)(bpy){P(OEt)3}3](BPh4)2 (5), nitrile [Os(CH3CN)(bpy){P(OEt)3}3](BPh4)2 (6), and hydrazine [Os(bpy)(NH2NH2){P(OEt)3}3](BPh4)2 (7) complexes were prepared by substituting the H2 ligand in the η2-H2 (4*) derivatives. Aryldiazene complex [Os(C6H5NNH)(bpy){P(OEt)3}3](BPh4)2 (8) was also obtained by allowing the hydride [OsH(bpy)P3]BPh4 to react with phenyldiazonium cation.  相似文献   

3.
4.
The ruthenium (II) mixed-ligand complexes cis-[Ru(bpy)2(NCS)2] (I), [Ru(bpy)2(pn)]2+ (II) and [Ru(bpy)2(phen)]2+ (III) (bpy, 2,2′-bipyridine; pn, 1,2-diaminopropane; phen, 1,10-phenanthroline) were subjected to two (for I and II), and three (for III) stepwise, one-electron reductions, and one-electron oxidations (all fully reversible); the products were studied in situ by solution UV—vis-near IR spectroscopy. The first two reductions took place in all cases on separate bpy ligands, while the third reduction of III took place on phen. Bands of the reduced species in the near IR—vis region are observed and assigned to anion radical ligands. Novel features of the LMCT bands of the oxidized species are presented and discussed.  相似文献   

5.
Summary New complexes of NiII-containing dihydrazones derived from dehydroacetic acid as primary ligands and ammonia or pyridine as secondary ligand were prepared and characterized by elemental analysis, conductance, spectral and magnetic data. The dihydrazones react with NiCl2 in their enolic forms as bis-tridentate complexing agents, forming dinuclear dihydrazido-diamine-dinickel complexes with ammino co-ligands. The ammino complexes were treated with pyridine to give the pyridino complexes. Squareplanar geometries are proposed for all the complexes and preliminary studies show that they possess antifungal activity.  相似文献   

6.
Hydride complex RuH2(PFFP)2 (1) [PFFP = (CF3CH2O)2PN(CH3)N(CH3)P(OCH2CF3)2] was prepared by allowing the compound RuCl4(bpy) · H2O (bpy = 1,2-bipyridine) to react first with the phosphite PFFP and then with NaBH4. Chloro-complex RuCl2(PFFP)2 (2) was also prepared, either by reacting RuCl4(bpy) · H2O with PFFP and zinc dust or by substituting triphenylphosphine with PFFP in the precursor complex RuCl2(PPh3)3. Hydride derivative RuH2(POOP)2 (3) (POOP = Ph2POCH2CH2OPPh2) was prepared by reacting compound RuCl3(AsPh3)2(CH3OH) first with the phosphite POOP and then with NaBH4. Depending on experimental conditions, treatment of carbonylated solutions of RuCl3 · 3H2O with POOP yields either the cis- or trans-RuCl2(CO)(PHPh2)(POOP) (4) derivative. Reaction of both cis- and trans-4 with LiAlH4 in thf affords dihydride complex RuH2(CO)(PHPh2)(POOP) (5). Chloro-complex all-trans-RuCl2(CO)2(PPh2OMe)2 (6) was obtained by reacting carbonylated solutions of RuCl3 · 3H2O in methanol with POOP. Treatment of chloro-complex 6 with NaBH4 in ethanol yielded hydride derivative all-trans-RuH2(CO)2(PPh2OMe)2 (7). The complexes were characterised spectroscopically and the X-ray crystal structures of complexes 1, 3, cis-4 and 6 were determined.  相似文献   

7.
Pyrazole IrHCl2(HRpz)P2 [P = PPh3, PiPr3; R = H, 3-Me], bis(pyrazole) [IrHCl(HRpz)2(PPh3)2]BPh4 and imidazole IrHCl2(HIm)(PPh3)2 derivatives were prepared by allowing the IrHCl2(PPh3)3 complex to react with the appropriate azole in refluxing 1,2-dichloroethane. Nitrile IrHCl2(CH3CN)(PPh3)2 and 2,2′-bipyridine (bpy) [IrHCl(bpy)(PPh3)2]BPh4 derivatives were also prepared using IrHCl2(PPh3)3 as a precursor. The complexes were characterised spectroscopically (IR and NMR) and a geometry in solution was also established. Protonation with Brønsted acid of pyrazole IrHCl2(Hpz)(PPh3)2 and imidazole IrHCl2(HIm)(PPh3)2 complexes proceeded with the loss of the azole ligands and the formation of the unstable IrHCl2(PPh3)2 derivative. Vinyl IrCl2{CHC(H)R1}(HRpz)P2 and IrCl2{CHC(H)R1}(HIm)P2 (R1 = Ph, p-tolyl, COOCH3; P = PPh3, PiPr3) complexes were prepared by allowing hydride-pyrazole IrHCl2(HRpz)P2 and hydride-imidazole IrHCl2(HIm)P2 to react with an excess of terminal alkyne in 1,2-dichloroethane. The complexes were characterised spectroscopically and by the X-ray crystal structure determination of the IrCl2{CHC(H)Ph}(Hpz)(PPh3)2 derivative.  相似文献   

8.
Chloro phosphite complexes RuClTpL(PPh3) (1a, 1b) [L = P(OEt)3, PPh(OEt)2] and RuClTp[P(OEt)3]2 (1c) [Tp = hydridotris(pyrazolyl)borate] were prepared by allowing RuClTp(PPh3)2 to react with an excess of phosphite. Treatment of the chloro complexes 1 with NaBH4 in ethanol yielded the hydride RuHTpL(PPh3) (2a, 2b) and RuHTp[P(OEt)3]2 (2c) derivatives. Protonation reaction of 2 with Brønsted acids was studied and led to thermally unstable (above 10 °C) dihydrogen [Ru(η2- H2)TpL(PPh3)]+ (3a, 3b) and [Ru(η2-H2)Tp{P(OEt)3}2]+ (3c) complexes. The presence of the η2-H2 ligand is indicated by short T1 min values and JHD measurements of the partially deuterated derivatives. Aquo [RuTp(H2O)L(PPh3)]BPh4 (4), carbonyl [RuTp(CO)L(PPh3)]BPh4 (5), and nitrile [RuTp(CH3CN)L(PPh3)]BPh4 (6) derivatives [L = P(OEt)3] were prepared by substituting H2 in the η2-H2 derivatives 3. Vinylidene [RuTp{CC(H)R}L(PPh3)]BPh4 (7, 8) (R = Ph, tBu) and allenylidene [RuTp(CCCR1R2)L(PPh3)]BPh4 (9-11) complexes (R1 = R2 = Ph, R1 = Ph R2 = Me) were also prepared by allowing dihydrogen complexes 3 to react with the appropriate HCCR and HCCC(OH)R1R2 alkynes. Deprotonation of vinylidene complexes 7, 8 with NEt3 was studied and led to acetylide Ru(CCR)TpL(PPh3) (12, 13) derivatives. The trichlorostannyl Ru(SnCl3)TpL(PPh3) (14) compound was also prepared by allowing the chloro complex RuClTpL(PPh3) to react with SnCl2 · 2H2O in CH2Cl2.  相似文献   

9.
Treatment of (η5-C5Me5)RuCl2(PR3) (1) with LiAlH4 in diethyl ether gives the ruthenium(II) tetrahydroaluminate complexes, (η5-C5Me5)Ru(AlH4)(PR3) (2) (R3 = Me3, Et3, iPr3, Ph2Me, Ph3), which can be quantitatively converted to the trihydriodurthenium(IV) complexes (η5-C5Me5)RuH3(PR3) (4), via protonolysis either by reaction with ethanol or by filtration through alumina. Low-temperature 1H NMR studies suggest the fluxionality of complexes 2 in solution at ambient temperature.  相似文献   

10.
The Os(II) arene ethylenediamine (en) complexes [(eta(6)-biphenyl)Os(en)Cl][Z], Z = BPh(4) (4) and BF(4) (5), are inactive toward A2780 ovarian cancer cells despite 4 being isostructural with an active Ru(II) analogue, 4R. Hydrolysis of 5 occurred 40 times more slowly than 4R. The aqua adduct 5A has a low pK(a) (6.3) compared to that of [(eta(6)-biphenyl)Ru(en)(OH(2))](2+) (7.7) and is therefore largely in the hydroxo form at physiological pH. The rate and extent of reaction of 5 with 9-ethylguanine were also less than those of 4R. We replaced the neutral en ligand by anionic acetylacetonate (acac). The complexes [(eta(6)-arene)Os(acac)Cl], arene = biphenyl (6), benzene (7), and p-cymene (8), adopt piano-stool structures similar to those of the Ru(II) analogues and form weak dimers through intermolecular (arene)C-H...O(acac) H-bonds. Remarkably, these Os(II) acac complexes undergo rapid hydrolysis to produce not only the aqua adduct, [(eta(6)-arene)Os(acac)(OH(2))](+), but also the hydroxo-bridged dimer, [(eta(6)-arene)Os(mu(2)-OH)(3)Os(eta(6)-arene)](+). The pK(a) values for the aqua adducts 6A, 7A, and 8A (7.1, 7.3, and 7.6, respectively) are lower than that for [(eta(6)-p-cymene)Ru(acac)(OH(2))](+) (9.4). Complex 8A rapidly forms adducts with 9-ethylguanine and adenosine, but not with cytidine or thymidine. Despite their reactivity toward nucleobases, complexes 6-8 were inactive toward A549 lung cancer cells. This is attributable to rapid hydrolysis and formation of unreactive hydroxo-bridged dimers which, surprisingly, were the only species present in aqueous solution at biologically relevant concentrations. Hence, the choice of chelating ligand in Os(II) (and Ru(II)) arene complexes can have a dramatic effect on hydrolysis behavior and nucleobase binding and provides a means of tuning the reactivity and the potential for discovery of anticancer complexes.  相似文献   

11.
Ruthenium and osmium complexes of the type CpMX(PPh3)L (M = Ru; X = Cl, H, S2COC10H19, S2COMe; L & PPh3 and PHPh2; M = Os, X = Cl, Br, I, H, D, xanthogenate, dithiocarbamate, BPh4, L = PPh3). The compound CpOsCl(PPh3)2 is readily soluble in MeOH and in the solution the cation [CpOs(PPh3)2]+ is present. Upon addition of NaBPh4 a white compound CpOs(PPh3)2BPh4 immediately precipitates, which can not be solved in MeOH, contrary to the behaviour of the corresponding ruthenium compound.  相似文献   

12.
The pentacoordinate [PtH{P(OEt)3}4]BF4 (1) hydride complex was prepared by allowing the tetrakis(phosphite) Pt{P(OEt)3}4 to react with HBF4.Et2O at -80 degrees C. Depending on the nature of the acid used, however, the protonation of the related Pt{PPh(OEt)2}4 complex yielded the pentacoordinate [PtH{PPh(OEt)2}4]BF4 (3) or the tetracoordinate [PtH{PPh(OEt)2}3]Y (4) [Y = BF4- (a), CF3SO3- (b), Cl- (c)] derivatives. Neutral PtHClP2 (7,8) [P = P(OEt)3, PPh(OEt)2] hydride complexes were prepared by allowing PtCl2P2 to react with NaBH4 in CH3CN. The tetrakis(phosphite)[Pt{P(OEt)3}4](BF4)2 (2) derivative was also synthesised and then characterised spectroscopically and by an X-ray crystal structure determination. Reactivity with aryldiazonium cations of all the hydrides was investigated and found to proceed only with the PtHClP2 complex to yield the aryldiazene [PtCl(ArN=NH)P2]BF4[P = PPh(OEt)2] derivative. The hydrazine [PtCl(NH2NH2){PPh(OEt)2}2]BPh4 complex was also prepared by allowing PtHClP2 to react first with AgCF3SO3 and then with hydrazine.  相似文献   

13.
A series of mixed ligand ruthenium(II) complexes [Ru(Hdpa)2(diimine)](ClO4)2, 1-5 where Hdpa is 2,2'-dipyridylamine and diimine is 1,10-phenanthroline (phen) and a modified/extended 1,10-phenanthroline such as, 5,6-dimethyl-1,10-phenanthroline (5,6-dmp), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), 5-methyldipyrido[3,2-d:2',3'-f]quinoxaline (mdpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) have been isolated and characterized by analytical and spectral methods. The complex [Ru(Hdpa)2(phen)](PF6)2 1 has been structurally characterized and the coordination geometry around Ru(II) in it is described as distorted octahedral. 1H NMR spectral data reveal that 1-5 should have a C2 symmetry lying on the diimine plane due to the rapid flapping of the coordinated Hdpa ligands. The interaction of the complexes with calf thymus (CT) DNA has been explored by using absorption and emission spectral and viscometry and electrochemical techniques and the mode of DNA binding of the complexes has been proposed. The DNA binding affinity of the complexes decreases with decrease in number of planar aromatic rings in the co-ligand supporting the intercalation of the diimine co-ligands in between the DNA base pairs. Circular dichroic spectral studies reveal that the complexes 3-5 exhibit induced circular dichroism upon binding to CT DNA. Interestingly, upon interaction with CT DNA all the complexes show an increase in anodic current in the cyclic voltammograms suggesting that they are involved in electrocatalytic guanine oxidation. Interestingly, of all the complexes, only 5 alters the DNA superhelicity upon binding with supercoiled pBR322 DNA, which is consistent with its higher DNA binding affinity. Further, the cytotoxicities of the complexes against human cervical epidermoid carcinoma cell line (ME180) have been examined. Interestingly, 5 exhibits a cytotoxicity against ME180 higher than other complexes with potency approximately 8 times more than cisplatin for 24 h incubation but 4 times lower than cisplatin for 48 h incubation.  相似文献   

14.
Treatment of the hydrido(dihydrogen) compound [RuHCl(H2)(PCy3)2] 1 with alkynes RC[triple bond, length as m-dash]CH (R=H, Ph) afforded the hydrido(vinylidene) complexes [RuHCl(=C=CHR)(PCy3)2] 2, 3 which react with HCl or [HPCy3]Cl to give the corresponding Grubbs-type ruthenium carbenes [RuCl2(=CHCH2R)(PCy3)2] 4, 5. The reaction of 2 (R=H) with DCl, or D2O in the presence of chloride sources, led to the formation of [RuCl2(=CHCH2D)(PCy3)2] 4-d1. Based on these observations, a one-pot synthesis of compounds 4 and 5 was developed using RuCl3.3H2O as the starting material. The hydrido(vinylidene) derivative 2 reacted with CF3CO2H and HCN at low temperatures to yield the carbene complexes [RuCl(X)(=CHCH3)(PCy3)2] 6, 7, of which 7 (X=CN) was characterized crystallographically. Salt metathesis of 2 with CF3CO2K and KI led to the formation of [RuH(X)(=C=CH2)(PCy3)2] 8, 9. The bis(trifluoracetato) and the diiodo compounds [RuX2(=CHCH3)(PCy3)2] 10, 11 as well as the new phosphine P(thp)3 12 (thp=4-tetrahydropyranyl) and the corresponding complex [RuCl2(=CHCH3){P(thp)3}2] 14 were also prepared. The catalytic activity of the ruthenium carbenes 4-7, 10, 11 and 14 in the olefin cross-metathesis of cyclopentene and allyl alcohol was investigated.  相似文献   

15.
16.
Three new palladium(II) complexes of formula [Pd(bipy)(XX)] [where bipy is 2,2′-bipyridine and XX are dianions of catechol (CAT), 4-tert-butylcatechol (BCAT) and 3,4-dimercaptotoluene (DMT)] have been prepared and characterized by physical methods. A ligand-ligand charge-transfer band in each complex was observed between 16–21 kK (εmax = 1500–2200 1 mol?1 cm?1) which is negatively solvochromic. These palladium(II) complexes in dimethylformamide photosensitize the formation of singlet oxygen and their ability to photosensitize triplet oxygen (3O2) to singlet oxygen (1O2) are compared with analogous platinum(II) complexes. In addition, 2,2′-bipyridine-platinum(II) complex of 3,4-dimercaptotoluene also undergoes self-sensitized photooxidation.  相似文献   

17.
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6).  相似文献   

18.
The reaction of [RuHCl(CO)(PPh3)3] with pyrimidine gives [RuHCl(CO)(PPh3)2(C4H4N2)]. The compound has been studied by IR, UV-Vis and X-ray crystallography. The molecular orbital diagram of the complex has been calculated with density functional theory (DFT). The spin-allowed singlet-singlet electronic transitions of the complex have been calculated with time-dependent DFT method, and the UV-Vis spectrum of the compound has been discussed on this basis. Emission of the compound was studied.  相似文献   

19.
We have investigated the electrochemical, spectroscopic, and electroluminescent properties of a family of diimine complexes of Ru featuring various aliphatic side chains as well as a more extended pi-conjugated system. The performance of solid-state electroluminescent devices fabricated from these complexes using indium tin oxide (ITO) and gold contacts appears to be dominated by ionic space charge effects. Their electroluminescence efficiency was limited by the photoluminescence efficiency of the Ru films and not by charge injection from the contacts. The incorporation of di-tert-butyl side chains on the dipyridyl ligand was found to be the most beneficial substitution in terms of reducing self-quenching of luminescence.  相似文献   

20.
Hydrazine complexes [MCl(η6-p-cymene)(RNHNH2)L]BPh4 (16) [M = Ru, Os; R = H, Me, Ph; L = P(OEt)3, PPh(OEt)2, PPh2OEt] were prepared by allowing dichloro complexes MCl26-p-cymene)L to react with hydrazines RNHNH2 in the presence of NaBPh4. Treatment of ruthenium complexes [RuCl(η6-p-cymene)(RNHNH2)L]BPh4 with Pb(OAc)4 led to acetate complex [Ru(κ2–O2CCH3)(η6-p-cymene)L]BPh4 (7). Instead, the reaction of osmium derivatives [OsCl(η6-p-cymene)(CH3NHNH2)L]BPh4 with Pb(OAc)4 afforded the methyldiazenido complex [Os(CH3N2)(η6-p-cymene)L}]BPh4 (8). Treatment with HCl of this diazenido complex 8 led to the methyldiazene cation [OsCl(CH3NNH)(η6-p-cymene)L}]+ (9+). The complexes were characterised spectroscopically and by X-ray crystal structure determination of [OsCl(η6-p-cymene)(PhNHNH2){PPh(OEt)2}]BPh4 (6b) and [Ru(κ2–O2CCH3)(η6-p-cymene){PPh(OEt)2}]BPh4 (7b).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号