首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is established that noncovalent complexes can be maintained both during and after electrospray and that assemblies of increasing size and complexity often lead to broadened peaks in mass spectra. This broadening arises from the tendency of large protein assemblies to form adducts with salts and is compounded when complexes are isolated directly from cells, without the full protein complement. To investigate the origins of this broadening in mass spectral peaks and to develop the optimal method for analyzing mass spectra of large protein complexes, we have carried out a systematic investigation of a series of noncovalent complexes representing a range of different sizes and architectures. We establish a positive correlation between peak width and the increased mass observed and show that this correlation is independent of the instrumental parameters employed. Using this relationship we show that we can determine masses of both 30S subunits and intact 2.3 MDa 70S ribosomes from Thermus thermophilus. The masses of both particles are consistent with multiple populations of ribosomes. To identify these various populations we combine simulated mass spectra of ribosomes, with and without the full protein complement, and estimate the extent of adducts from our study of known complexes. The results allow us to determine the contribution of the different subpopulations to the overall mass spectrum. We confirm the existence of these subpopulations using tandem mass spectrometry of intact 30S subunits. Overall, the results show that, rather than uniform particles, gas-phase ribosomes consist of a number of discrete populations. More generally, the results establish a rigorous procedure for accurate mass measurement and spectral analysis of heterogeneous macromolecular assemblies.  相似文献   

2.
The protein-micelle complex formed between the protein EmrE and the lipid dodecylmaltoside has been examined by mass spectrometry. The results show that despite the unfavorable hydrophobic environment in the mass spectrometer it is possible to preserve protein submicelle complexes in the gas phase. The peaks assigned to the submicelle complexes are broad in nature and consistent with a heterogeneous distribution of lipid molecules attached to the protein complex. As such, the spectrum cannot be interpreted. To simplify this complexity we used a tandem mass spectrometry procedure in which discrete m/z values are isolated from the peak and subjected to collision-induced dissociation. These spectra reveal clusters of DDM molecules as well as sequential release of TPP+ and EmrE from the complex as the collision cell voltage is raised. Taken together, the results provide direct evidence for drug binding within a relevant gas-phase protein-micelle complex.  相似文献   

3.
Proteins and the complexes they form with their ligands are the players of cellular action. Their function is directly linked with their structure making the structural analysis of protein‐ligand complexes essential. Classical techniques of structural biology include X‐ray crystallography, nuclear magnetic resonance spectroscopy and recently distinguished cryo‐electron microscopy. However, protein‐ligand complexes are often dynamic and heterogeneous and consequently challenging for these techniques. Alternative approaches are therefore needed and gained importance during the last decades. One alternative is native mass spectrometry, which is the analysis of intact protein complexes in the gas phase. To achieve this, sample preparation and instrument conditions have to be optimised. Native mass spectrometry then reveals stoichiometry, protein interactions and topology of protein assemblies. Advanced techniques such as ion mobility and high‐resolution mass spectrometry further add to the range of applications and deliver information on shape and microheterogeneity of the complexes. In this tutorial, we explain the basics of native mass spectrometry including sample requirements, instrument modifications and interpretation of native mass spectra. We further discuss the developments of native mass spectrometry and provide example spectra and applications.  相似文献   

4.
Small heat-shock proteins (sHSPs) are molecular chaperones that prevent irreversible aggregation through binding nonnative target proteins. Due to their heterogeneity, these sHSP:target complexes remain poorly understood. We present a nanoelectrospray mass spectrometry analysis algorithm for estimating the distribution of stoichiometries comprising a polydisperse ensemble of oligomers. We thus elucidate the organization of complexes formed between sHSPs and different target proteins. We find that binding is mass dependent, with the resultant complexes reflecting the native quaternary architecture of the target, indicating that protection happens early in the denaturation. Our data therefore explain the apparent paradox of how variable complex morphologies result from the generic mechanism of protection afforded by sHSPs. Our approach is applicable to a range of polydisperse proteins and provides a means for the automated and accurate interpretation of mass spectra derived from heterogeneous protein assemblies.  相似文献   

5.
New coordination compounds of some selected metal ions from the first and second transition metals series with a Schiff base were synthesized and characterized. The Schiff base is derived from 4-Aminoantipyrine and 3-(hydroxyimino) butan-2-one. The compounds were characterized by different analysis tools like; elemental analysis, mass spectra, Fourier transform infrared (FTIR) as well as electronic spectra, magnetic measurements, molar conductance and thermal analysis technique. All complexes were formed with 1:1 (metal: ligand) stoichiometry except Mn (II) where 1:2 (Mn: ligand) is formed. Schiff base ligand interacted as a tridentate ligand by using the nitrogen atoms of the imine and the oximato groups and the carbonyl oxygen atom as donor groups with all studied metal ions except copper (II) and manganese (II) where the carbonyl oxygen is not shared in the coordination. These complexes show various physicochemical properties. X-ray powder diffraction shows different crystal systems; Cd (II) complex: hexagonal, Cu (II) complex: orthorhombic; and [Ni (II), Mn (II), Rh (III) & Pd (II)] complexes: monoclinic. All compounds showed potent cytotoxicity against the growth of human liver cancer cell lines. The square planar Pd (II) complex was more active than those of octahedral geometries of all other synthesized complexes. Cd (II) complex has the highest microbial growth inhibition than the rest of the prepared complexes. The docking active sites interactions were evaluated using the selected proteins EGFR tyrosine kinase and protein crystal structure of GlcN-O-P synthase. in vitro antioxidant assay revealed potent free radical scavenging activity of the three synthesized Cu (II), Pd (II) and Rh (III) complexes that exceeded the standard ascorbic acid. Pd (II) complex shows the most significant inhibition denaturation percent.  相似文献   

6.
Electrospray ionization mass spectrometry was used to investigate complex formation of different metal complexes in a continuous-flow ligand-exchange reactor. A computer program was developed based on normal equilibrium calculations to predict the formation of various metal-ligand complexes. Corresponding to these calculations, infusion electrospray mass spectrometric experiments were performed to investigate the actual complex formation in solution. The data clearly show good correlation between the theoretically calculated formation of metal-ligand complexes and the experimental mass spectrometric data. Moreover, the approach demonstrates that the influence of the pH can be investigated using a similar approach. Indirectly, these infusion experiments provide information on relative binding constants of different ligands towards a metal-ion. To demonstrate this, a continuous-flow ligand-exchange detection system with mass spectrometric detection was developed. Injection of ligands, with different affinity for the metal-ion, into the reactor shows good correlation between binding constants and the response in the ligand-exchange detection system. Additional information on the introduced ligand, and the complexes formed after introduction of the ligand, can be obtained from interpretation of the mass spectra.  相似文献   

7.
A new algorithm has been designed and tested to identify protein, or any other macromolecular, complexes that have been widely reported in mass spectral data. The program takes advantage of the appearance of multiply charged ions that are common to both electrospray ionization and, to a lesser extent, matrix-assisted laser desorption/ionization (MALDI) mass spectra. The algorithm, known as COMPLX for the COMposition of Protein-Ligand compleXes, is capable of identifying complexes for any protein or macromolecule with a binding partner of molecular mass up to 100 000 Da. It does so by identifying ion pairs present in a mass spectrum that, when they share a common charge, have an m/z value difference that is an integer fraction of a ligand or binding partner molecular mass. Several additional criteria must be met in order for the result to be ranked in the output file including that all m/z values for ions of the protein or complex have progressively lower values as their assigned charge increases, the difference between the m/z values for adjacent charge states (z, z + 1) decrease as the assigned charge state increases, and the ratio of any two m/z values assigned to a protein or complex is equal to the inverse ratio of their charge. The entries that satisfy these criteria are then ranked according to the appearance of ions in the mass spectrum associated with the binding partner, the length of a continuous series of charges across any set of ions for a protein and complex and the lowest error recorded for the molecular mass of the ligand or binding partner. A diverse range of hypothetical and experimental mass spectral data were used to implement and test the program, including those recorded for antibody-peptide, protein-peptide and protein-heme complexes. Spectra of increasing complexity, in terms of the number of ions input, were also successfully analysed in which the number of input m/z values far exceeds the few associated with a macromolecular complex. Thus the program will be of value in a future goal of proteomics, where mass spectrometry already plays a central role, for the direct analysis of protein and other associations within biological extracts.  相似文献   

8.
Low-impact ionization sources like electrospray ionization (ESI) and matrix-assisted, laser desorption/ionization (MALDI) equipped with time-of-flight (TOF) mass analyzers provide intact protein analysis over a very wide molar mass range. ESI/TOFMS provides also indications on the higher-order structure of intact proteins and non-covalent protein complexes. However, direct analysis of intact proteins mixtures in real samples shows limited success, mainly because spectra become very complex to interpret. This is also due to sample contaminants, and to the mechanism of competitive ionization in ESI or MALDI. Rapid and efficient sample clean-up and separation methods can significantly enhance the power of TOFMS for intact protein analysis. However, if protein native conditions want to be maintained, the methods should affect neither the three-dimensional structure nor the non-covalent chemistry of the proteins. Reversed-phase (RP) HPLC, size-exclusion chromatography (SEC), and capillary zone electrophoresis (CZE) are on-line or off-line coupled to ESI/TOFMS or MALDI/TOFMS. In fact, these separation methods often show limitations when applied to the analysis of native proteins. Organic modifiers and saline buffers are required in the case of RP HPLC or CZE. They can induce protein degradation or affect ionization when MS is performed after separation. High voltages used in CZE can contribute to alter proteins from their native form. In the case of high molar mass proteins, SEC is scarcely selective, and barely able to detect protein aggregates. Sample entanglement/adsorption on the stationary phase can also occur.  相似文献   

9.
The difficulties to detect intact noncovalent complexes involving proteins and peptides by MALDI-TOF mass spectrometry have hindered a widespread use of this approach. Recently, "intensity fading MS" has been presented as an alternative strategy to detect noncovalent interactions in solution, in which a reduction in the relative signal intensity of low molecular mass binding partners (i.e., protease inhibitors) can be observed when their target protein (i.e., protease) is added to the sample. Here we have performed a systematic study to explore how various experimental conditions affect the intensity fading phenomenon, as well as a comparison with the strategy based on the direct detection of intact complexes by MALDI MS. For this purpose, the study is focused on two different protease-inhibitor complexes naturally occurring in solution, together with a heterogeneous mixture of nonbinding molecules derived from a biological extract, to examine the specificity of the approach, i.e., those of carboxypeptidase A (CPA) bound to potato carboxypeptidase inhibitor (PCI) and of trypsin bound to bovine pancreatic trypsin inhibitor (BPTI). Our results show that the intensity fading phenomenon occurs when the binding assay is carried out in the sub-muM range and the interacting partners are present in complex mixtures of nonbinding compounds. Thus, at these experimental conditions, the specific inhibitor-protease interaction causes a selective reduction in the relative abundance of the inhibitor. Interestingly, we could not detect any gaseous noncovalent inhibitor-protease ions at these conditions, presumably due to the lower high-mass sensitivity of MCP detectors.  相似文献   

10.
Electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry has been used to characterize heterotetrameric corynebacterial sarcosine oxidase. By using a conventional quadrupole mass spectrometer, no spectra for the intact complex could be obtained (i. e., electrospraying protein at neutral pH), but spectra showing the four protein subunits were obtained when electrospraying from acidic solution. Initial low resolution ESI-FTICR mass spectra of the intact heterotetramer revealed a typical narrow charge state distribution in the range 6000 < m/z < 9000, consistent with retention of a compact structure in the gas phase, and gave a mass measurement about 1000 u higher than predicted. Efficient in-trap clean up, based upon low energy collisionally induced dissociation of adducts, allowed significant improvement in mass measurement accuracy. The present results represent the largest heteromultimeric protein complex successfully analyzed using FTICR mass spectrometry, and clearly illustrate the importance of sample clean up methods for large molecule characterization.  相似文献   

11.
Characterizing intact multiprotein complexes in terms of both their mass and size by ion mobility-mass spectrometry is becoming an increasingly important tool for structural biology. Furthermore, the charge states of intact protein complexes can dramatically influence the information content of gas-phase measurements performed. Specifically, protein complex charge state has a demonstrated influence upon the conformation, mass resolution, ion mobility resolution, and dissociation properties of protein assemblies upon collisional activation. Here we present the first comparison of charge-reduced multiprotein complexes generated by solution additives and gas-phase ion-neutral reaction chemistry. While the charge reduction mechanism for both methods is undoubtedly similar, significant gas-phase activation of the complex is required to reduce the charge of the assemblies generated using the solution additive strategy employed here. This activation step can act to unfold intact protein complexes, making the data difficult to correlate with solution-phase structures and topologies. We use ion mobility-mass spectrometry to chart such conformational effects for a range of multi-protein complexes, and demonstrate that approaches to reduce charge based on ion-neutral reaction chemistry in the gas-phase consistently produce protein assemblies having compact, ‘native-like’ geometries while the same molecules added in solution generate significantly unfolded gas-phase complexes having identical charge states.  相似文献   

12.
Electrospray ionization (ESI) ion trap mass spectrometers with relatively low resolution are frequently used for the analysis of natural products and peptides. Although ESI spectra of multiply charged protein molecules also can be measured on this type of devices, only average spectra are produced for the majority of naturally occurring proteins. Evaluating such ESI protein spectra would provide valuable information about the native state of investigated proteins. However, no suitable and freely available software could be found which allows the charge state determination and molecular weight calculation of single proteins from average ESI‐MS data. Therefore, an algorithm based on standard deviation optimization (scatter minimization) was implemented for the analysis of protein ESI‐MS data. The resulting software ESIprot was tested with ESI‐MS data of six intact reference proteins between 12.4 and 66.7 kDa. In all cases, the correct charge states could be determined. The obtained absolute mass errors were in a range between ?0.2 and 1.2 Da, the relative errors below 30 ppm. The possible mass accuracy allows for valid conclusions about the actual condition of proteins. Moreover, the ESIprot algorithm demonstrates an extraordinary robustness and allows spectral interpretation from as little as two peaks, given sufficient quality of the provided m/z data, without the necessity for peak intensity data. ESIprot is independent from the raw data format and the computer platform, making it a versatile tool for mass spectrometrists. The program code was released under the open‐source GPLv3 license to support future developments of mass spectrometry software. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Electrospray time-of-flight mass spectrometry was used to quantitatively determine the dissociation constant of chorismate mutase and a transition state analogue inhibitor. This system presents a fairly complex stoichiometry because the native protein is a homotrimer with three equal and independent substrate binding sites. We can detect the chorismate mutase trimer as well as chorismate mutase-inhibitor complexes by choosing appropriate conditions in the ESI source. To verify that the protein-inhibitor complexes are specific, titration experiments with different enzyme variants and different inhibitors were performed. A plot of the number of bound inhibitors versus added inhibitor concentration revealed saturation behavior with 3:1 (inhibitor:functional trimer) stoichiometry for the TSA. The soft ESI conditions, the relatively high protein mass of 43.5 kDa, and the low charge state (high m/z) result in broad peaks, a typical problem in analyzing noncovalent protein complexes. Due to the low molecular weight of the TSA (226 Da) the peaks of the free protein and the protein with one, two or three inhibitors bound cannot be clearly resolved. For data analysis, relative peak areas of the deconvoluted spectra of chorismate mutase-inhibitor complexes were obtained by fitting appropriate peak shapes to the signals corresponding to the free enzyme and its complexes with one, two, or three inhibitor molecules. From the relative peak areas we were able to calculate a dissociation constant that agreed well with known solution-phase data. This method may be generally useful for interpreting mass spectra of noncovalent complexes that exhibit broad peaks in the high m/z range.  相似文献   

14.
Chemical cross-linking in combination with high-mass MALDI mass spectrometry allows for the rapid identification of interactions and determination of the complex stoichiometry of noncovalent protein–protein interactions. As the molecular weight of these complexes increases, the fraction of multiply charged species typically increases. In the case of homomeric complexes, signals from multiply charged multimers overlap with singly charged subunits. Remarkably, spectra recorded in negative ion mode show lower abundances of multiply charged species, lower background, higher reproducibility, and, thus, overall cleaner spectra compared with positive ion mode spectra. In this work, a dedicated high-mass detector was applied for measuring high-mass proteins (up to 200 kDa) by negative ion mode MALDI-MS. The influences of sample preparation and instrumental parameters were carefully investigated. Relative signal integrals of multiply charged anions were relatively independent of any of the examined parameters and could thus be approximated easily for the spectra of cross-linked complexes. For example, the fraction of doubly charged anions signals overlapping with the signals of singly charged subunits could be more precisely estimated than in positive ion mode. Sinapinic acid was found to be an excellent matrix for the analysis of proteins and cross-linked protein complexes in both ion modes. Our results suggest that negative ion mode data of chemically cross-linked protein complexes are complementary to positive ion mode data and can in some cases represent the solution phase situation better than positive ion mode.  相似文献   

15.
Electrostatic interactions play an important role in the formation of noncovalent complexes. Our previous work has highlighted the role of certain amino acid residues, such as arginine, glutamate, aspartate, and phosphorylated/sulfated residues, in the formation of salt bridges resulting in noncovalent complexes between peptides. Tandem mass spectrometry (MS) studies of these complexes using collision-induced dissociation (CID) have provided information on their relative stability. However, product-ion spectra produced by CID have been unable to assign specifically the site of interaction for the complex. In this work, tandem MS experiments were conducted on noncovalent complexes using both electron capture dissociation (ECD) and electron-transfer dissociation (ETD). The resulting spectra were dominated by intramolecular fragments of the complex with the electrostatic interaction site intact. Based upon these data, we were able to assign the binding site for the peptides forming the noncovalent complex.  相似文献   

16.
《Analytical letters》2012,45(3):303-311
Abstract

Field desorption mass spectra of Technetium and Rhenium anionic coordinate complexes have been obtained. lonization was principally by electron extraction from the anion, cation or neutral anion-cation pair, or by cation attachment to the intact molecule. The spectra were generally simple and allowed confirmation of known of proposed coordinate complex structures.  相似文献   

17.
FT-IR study of rare earth 4-aminobenzenesulfonate complexes   总被引:1,自引:0,他引:1  
The crystal structure of lanthanum 4-amino-benzenesulfonate complex has been determined by X-ray diffraction. The crystal data indicate that lanthanum and neodymium 4-amino-benzenesulfonates are isomorphous. The FT-IR spectroscopic study of rare earth 4-amino-benzenesulfonate complexes showed that the spectra of light rare earth (La, Nd, Sm, Eu) complexes are similar and so are the spectra of heavy rare earth (Dy, Er, Y) complexes. There are remarkable differences between the spectra of light rare earth and heavy rare earth complexes. Based on above results, we infer that light rare earth (La, Nd, Sm, Eu) complexes are isomorphous and three heavy rare earth (Dy, Er, Y) complexes are of a different structure but also isomorphous.  相似文献   

18.
A novel laser-based mass spectrometry method termed LILBID (laser-induced liquid bead ion desorption) is applied to analyze large integral membrane protein complexes and their subunits. In this method the ions are IR-laser desorbed from aqueous microdroplets containing the hydrophobic protein complexes solubilized by detergent. The method is highly sensitive, very efficient in sample handling, relatively tolerant to various buffers, and detects the ions in narrow, mainly low-charge state distributions. The crucial experimental parameter determining whether the integral complex or its subunits are observed is the laser intensity: At very low intensity level corresponding to an ultrasoft desorption, the intact complexes, together with few detergent molecules, are transferred into vacuum. Under these conditions the oligomerization state of the complex (i.e., its quaternary structure) may be analyzed. At higher laser intensity, complexes are thermolyzed into subunits, with any residual detergent being stripped off to yield the true mass of the polypeptides. The model complexes studied are derived from the respiratory chain of the soil bacterium Paracoccus denitrificans and include complexes III (cytochrome bc(1) complex) and IV (cytochrome c oxidase). These are well characterized multi-subunit membrane proteins, with the individual hydrophobic subunits being composed of up to 12 transmembrane helices.  相似文献   

19.
The study of noncovalent interactions by mass spectrometry has become an active field of research in recent years. The role of the different noncovalent intermolecular forces is not yet fully understood since they tend to be modulated upon transfer into the gas phase. The hydrophobic effect, which plays a major role in protein folding, adhesion of lipid bilayers, etc., is absent in the gas phase. Here, noncovalent complexes with different types of interaction forces were investigated by mass spectrometry and compared with the complex present in solution. Creatine kinase (CK), glutathione S-transferase (GST), ribonuclease S (RNase S), and leucine zipper (LZ), which have dissociation constants in the nM range, were studied by native nanoelectrospray mass spectrometry (nanoESI-MS) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) combined with chemical cross-linking (XL). Complexes interacting with hydrogen bonds survived the transfer into gas phase intact and were observed by nanoESI-MS. Complexes that are bound largely by the hydrophobic effect in solution were not detected or only at very low intensity. Complexes with mixed polar and hydrophobic interactions were detected by nanoESI-MS, most likely due to the contribution from polar interactions. All noncovalent complexes could easily be studied by XL MALDI-MS, which demonstrates that the noncovalently bound complexes are conserved, and a real “snap-shot” of the situation in solution can be obtained.  相似文献   

20.
Electrospray ionisation mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy were used to compare the binding of mononuclear nickel, ruthenium and platinum complexes to double stranded DNA (dsDNA) and quadruplex DNA (qDNA). CD studies provided evidence for the binding of intact complexes of all three metal ions to qDNA. ESI mass spectra of solutions containing platinum or ruthenium complexes and qDNA showed evidence for the formation of non-covalent complexes consisting of intact metal molecules bound to DNA. However, the corresponding spectra of solutions containing nickel complexes principally contained ions consisting of fragments of the initial nickel molecule bound to qDNA. In contrast ESI mass spectra of solutions containing nickel, ruthenium or platinum complexes and dsDNA only showed the presence of ions attributable to intact metal molecules bound to DNA. The fragmentation observed in mass spectral studies of solutions containing nickel complexes and qDNA is attributable to the lower thermodynamic stability of the former metal complexes relative to those containing platinum or ruthenium, as well as the slightly harsher instrumental conditions required to obtain spectra of qDNA. This conclusion is supported by the results of tandem mass spectral studies, which showed that ions consisting of intact nickel complexes bound to qDNA readily undergo fragmentation by loss of one of the ligands initially bound to the metal. The ESI-MS results also demonstrate that the binding affinity of each of the platinum and ruthenium complexes towards qDNA is significantly less than that towards dsDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号