首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
赵景涛  林兆军  栾崇彪  吕元杰  冯志宏  杨铭 《中国物理 B》2014,23(12):127104-127104
In this study, we investigate the effects of GaN cap layer thickness on the two-dimensional electron gas (2DEG) electron density and 2DEG electron mobility of AlN/GaN heterostructures by using the temperature-dependent Hall measurement and theoretical fitting method. The results of our analysis clearly indicate that the GaN cap layer thickness of an AlN/GaN heterostructure has influences on the 2DEG electron density and the electron mobility. For the AlN/GaN heterostructures with a 3-nm AlN barrier layer, the optimized thickness of the GaN cap layer is around 4 nm and the strained a-axis lattice constant of the AlN barrier layer is less than that of GaN.  相似文献   

2.
Temperature dependence of the density of two-dimensional electron gas (2DEG) in Al0.18Ga0.82N/GaN heterostructures has been investigated by means of high temperature Hall measurements ranging from room temperature to 500 °C. It is found that the 2DEG density decreases with increasing temperature in the range from room temperature to 250 °C, and then increases with the temperature above 250 °C. It is thought that the decrease of the 2DEG density from room temperature to 250 °C is caused by the reduction of the conduction band offset at high temperatures. The increase of measured 2DEG density at higher temperatures is attributed to the background electron concentration in the GaN layer. Theoretical calculation of the 2DEG density in Al0.18Ga0.82N/GaN heterostructures at various temperatures is consistent with the experimental results using the multilayer Hall effect model. PACS 73.40.Kp; 73.61.Ey  相似文献   

3.
The strain relaxation of an AlGaN barrier layer may be influenced by a thin cap layer above, and affects the transport properties of AlGaN/GaN heterostructures. Compared with the slight strain relaxation found in AlGaN barrier layer without cap layer, it is found that a thin cap layer can induce considerable changes of strain state in the AlGaN barrier layer. The degree of relaxation of the AlGaN layer significantly influences the transport properties of the two-dimensional electron gas (2DEG) in AlGaN/GaN heterostructures. It is observed that electron mobility decreases with the increasing degree of relaxation of the AlGaN barrier, which is believed to be the main cause of the deterioration of crystalline quality and morphology on the AlGaN/GaN interface. On the other hand, both GaN and AlN cap layers lead to a decrease in 2DEG density. The reduction of 2DEG caused by the GaN cap layer may be attributed to the additional negative polarization charges formed at the interface between GaN and AlGaN, while the reduction of the piezoelectric effect in the AlGaN layer results in the decrease of 2DEG density in the case of AlN cap layer.  相似文献   

4.
Quantum transport properties of two-dimensional electron gas (2DEG) in undoped MgZnO/ZnO heterostructures with polarization charge effect have been investigated theoretically. Polarization roughness scattering (PRS) combining polarization charge and interface roughness scattering was proposed as a new scattering mechanism. It was found that the carriers confined in the heterostructures (HSs) would be scattered from polarization charges when they were moving along the in-plane and PRS played a very important role for the low-temperature electron mobility when the electron density Ns exceeded 1.0e11 cm−2, especially in a higher electron density region. With PRS, the experimental data on the density dependence of 2DEG mobility in the MgZnO/ZnO HSs under study can be well reproduced. The study indicates that the improved processing techniques providing a smooth interface and a good separation between the 2DEG electrons and the polarization charges should be significant for the quantum device’s performance.  相似文献   

5.
李群  陈谦  种景 《物理学报》2018,67(2):27303-027303
使用变分法推导了InAlN/GaN异质结二维电子气波函数和基态能级的解析表达式,并讨论了InAlN/GaN异质结结构参数对二维电子气电学特性的影响.在假设二维电子气来源于表面态的前提下,使用了一个包含两个变分参数的尝试波函数推导电子总能量期望值,并通过寻找能量期望极小值确定变分参数.计算结果显示,二维电子气面密度随InAlN厚度的增大而增大,且理论结果与实验结果一致.二维电子气面密度增大抬高了基态能级与费米能级,并保持二者之差增大以容纳更多电子.InAlN/GaN界面处的极化强度失配随着In组分增大而减弱,二维电子气面密度随之减小,并导致基态能级与费米能级减小.所建立的模型能够解释InAlN/GaN异质结二维电子气的部分电学行为,并为电子输运与光学跃迁的研究提供了解析表达式.  相似文献   

6.
Models for calculating the sheet densities of two-dimensional electron gas(2DEG) induced by spontaneous and piezoelectric polarization in Al GaN/GaN,Al GaN/Al N/GaN,and GaN/Al GaN/GaN heterostructures are provided.The detailed derivation process of the expression of 2DEG sheet density is given.A longstanding confusion in a very widely cited formula is pointed out and its correct expression is analyzed in detail.  相似文献   

7.
AlxGa1-x N/GaN调制掺杂异质结构的子带性质研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过低温和强磁场下的磁输运测量研究了Al0.22Ga0.78N/GaN调制掺杂异质结构中2DEG的子带占据性质和子带输运性质.在该异质结构的磁阻振荡中观察到了双子带占据现象,并发现2DEG的总浓度随第二子带浓度的变化呈线性关系.得到了该异质结构中第二子带被2DEG占据的阈值电子浓度为7.3×1012cm-2.采用迁移率谱技术得到了不同样品的分别对应于第一和第二子带的输运迁移率.发现当样品产生应变弛豫时第一子带的电子迁移 关键词: AlGaN/GaN异质结 二维电子气 子带占据 输运迁移率  相似文献   

8.
张金风  毛维  张进城  郝跃 《中国物理 B》2008,17(7):2689-2695
To reveal the internal physics of the low-temperature mobility of two-dimensional electron gas (2DEG) in Al- GaN/GaN heterostructures, we present a theoretical study of the strong dependence of 2DEG mobility on Al content and thickness of AlGaN barrier layer. The theoretical results are compared with one of the highest measured of 2DEG mobility reported for AlGaN/GaN heterostructures. The 2DEG mobility is modelled as a combined effect of the scat- tering mechanisms including acoustic deformation-potential, piezoelectric, ionized background donor, surface donor, dislocation, alloy disorder and interface roughness scattering. The analyses of the individual scattering processes show that the dominant scattering mechanisms are the alloy disorder scattering and the interface roughness scattering at low temperatures. The variation of 2DEG mobility with the barrier layer parameters results mainly from the change of 2DEG density and distribution. It is suggested that in AlGaN/GaN samples with a high Al content or a thick AlGaN layer, the interface roughness scattering may restrict the 2DEG mobility significantly, for the AlGaN/GaN interface roughness increases due to the stress accumulation in AlGaN layer.  相似文献   

9.
The collective resonant photoresponse in Si/SiGe structures with a 2DEG under microwave radiation is reported for the first time. The application of microwave radiation of various frequencies results in resonant photoconductivity at magnetic field values that are systematically lower than expected for the cyclotron resonance (CR) in an infinitely large two-dimensional electron system. The analysis of the data shows that the observed microwave radiation induced response is dominated by plasmon excitations.  相似文献   

10.
通过用数值计算方法自洽求解薛定谔方程和泊松方程,研究了Al组分对AlxGa1-xN/GaN异质结构二维电子气性质的影响,给出了AlxGa1-x< /sub>N/GaN异质结构二维电子气分布和面密度,导带能带偏移以及子带中电子分布随AlxGa 1-xN势垒层中Al组分的变化关系,并用AlxGa1-xN/GaN 异质结构自发极化与压电极化机理和能 关键词: xGa1-xN/GaN异质结构')" href="#">AlxGa1-xN/GaN异质结构 二维电子气 自发极化 压电极化  相似文献   

11.
We investigated the influence of an ultrathin InGaN channel layer on two-dimensional electron gas (2DEG) properties in a newly proposed hybrid GaN/InxGa1−xN/ZnO heterostructure using numerical methods. We found that 2DEG carriers were confined at InGaN/ZnO and GaN/InGaN interfaces. Our calculations show that the probability densities of 2DEG carriers at these interfaces are highly influenced by the In mole fraction of the InGaN channel layer. Therefore, 2DEG carrier confinement can be adjustable by using the In mole fraction of the InGaN channel layer. The influence of an ultrathin InGaN channel layer on 2DEG carrier mobility is also discussed. Usage of an ultrathin InGaN channel layer with a low indium mole fraction in these heterostructures can help to reduce the short-channel effects by improvements such as providing 2DEG with higher sheet carrier density which is close to the surface and has better carrier confinement.  相似文献   

12.
The control effect of the ferroelectric polarization on the two-dimensional electron gas (2DEG) in a ferroelectric/AlGaN/GaN metal–ferroelectric–semiconductor (MFS) structure is theoretically analyzed by a self-consistent approach. With incorporating the hysteresis nature of the ferroelectric into calculation, the nature of the control effect is disclosed, where the 2DEG density is depleted/restored after poling/depoling operation on the MFS structure. The orientation of the ferroelectric polarization is clarified to be parallel to that of the AlGaN barrier, which, based on an electrostatics analysis, is attributed to the pinning effect of the underlying polarization. Reducing the thickness of the AlGaN barrier from 25 nm to 20 nm leads to an improved control modulation of the 2DEG density from 36.7% to 54.1%.  相似文献   

13.
《Current Applied Physics》2020,20(11):1268-1273
Two-dimensional electron gases (2DEGs) on the SrTiO3 (STO) surface or in STO-based heterostructures have exhibited many intriguing phenomena, which are strongly dependent on the 2DEG-carrier density. We report that the tunability of the 2DEG-carrier density is significantly enhanced by adding a monolayer LaTiO3 (LTO) onto the STO. Ultraviolet (UV) irradiation induced maximum carrier density of the 2DEG in LTO/STO is increased by a factor of ~4 times, compared to that of the bare STO. By oxygen gas exposure, it becomes 10 times smaller than that of the bare STO. This enhanced tunability is attributed to the drastic surface property change of a polar LTO layer by UV irradiation and O2 exposure. This indicates that the 2DEG controllability in LTO/STO is more reliable than that on the bare STO driven by defects, such an oxygen vacancy.  相似文献   

14.
张阳  顾书林  叶建东  黄时敏  顾然  陈斌  朱顺明  郑有炓 《物理学报》2013,62(15):150202-150202
论文根据ZnMgO/ZnO异质结构二维电子气的能带结构及相关理论模型, 采用一维Poisson-Schrodinger方程的自洽求解, 模拟计算了ZnMgO/ZnO异质结构中二维电子气的分布及其对ZnMgO势垒层厚度及Mg组分的依赖关系. 研究发现该异质结构中ZnMgO势垒层厚度存在一最小临界值: 当垒层厚度小于该临界值时, 二维电子气消失, 当垒层厚度大于该临界值时, 其二维电子气密度随着该垒层厚度的增加而增大; 同时研究发现ZnMgO势垒层中Mg组分的增加将显著增强其二维电子气的行为, 导致二维电子气密度的明显增大; 论文对模拟计算获得的结果与相关文献报道的实验结果进行了比较, 并从极化效应和能带结构的角度进行了分析和讨论, 给出了合理的解释. 关键词: 氧化锌 二维电子气 异质结构 理论计算  相似文献   

15.
Ni Schottky contacts on AlGaN/GaN heterostructures have been fabricated. The samples are then thermally treated in a furnace with N2 ambient at 600 circC for different times (0.5, 4.5, 10.5, 18, 33, 48 and 72 h). Current-voltage (I-V) and capacitance-voltage (C-V) relationships are measured, and Schrödinger's and Poisson's equations are self-consistently solved to obtain the characteristic parameters related to AlGaN/GaN heterostructure Schottky contacts: the two-dimensional electron gas (2DEG) sheet density, the polarization sheet charge density, the 2DEG distribution in the triangle quantum well and the Schottky barrier height for each thermal stressing time. Most of the above parameters reduce with the increase of stressing time, only the parameter of the average distance of the 2DEG from the AlGaN/GaN interface increases with the increase of thermal stressing time. The changes of the characteristic parameters can be divided into two stages. In the first stage the strain in the AlGaN barrier layer is present. In this stage the characteristic parameters change rapidly compared with those in the second stage in which the AlGaN barrier layer is relaxed and no strain is present.  相似文献   

16.
Experimental Hall data that were carried out as a function of temperature (60–350 K) and magnetic field (0–1.4 T) were presented for Si-doped low Al content (x=0.14) n–AlxGa1−xAs/GaAs heterostructures that were grown by molecular beam epitaxy (MBE). A 2-dimensional electron gas (2DEG) conduction channel and a bulk conduction channel were founded after implementing quantitative mobility spectrum analysis (QMSA) on the magnetic field dependent Hall data. An important decrease in 2DEG carrier density was observed with increasing temperature. The relationship between the bulk carriers and 2DEG carriers was investigated with 1D self consistent Schrödinger–Poisson simulations. The decrement in the 2DEG carrier density was related to the DX-center carrier trapping. With the simulation data that are not included in the effects of DX-centers, 17 meV of effective barrier height between AlGaAs/GaAs layers was found for high temperatures (T>300 K). With the QMSA extracted values that are influenced by DX-centers, 166 meV of the DX-center activation energy value were founded at the same temperatures.  相似文献   

17.
The carrier tunneling dynamics of self-assembled InAs quantum dots (QD) is studied using a time-resolved conductance measurement of a nearby two-dimensional electron gas (2DEG). The investigated heterostructures consist of a layer of QDs with different coupling strengths to a 2DEG, adjusted by different thicknesses of the spacer layers. We demonstrate a strong influence of charged QDs on the conductance of the 2DEG, even for very weak coupling between the QD layer and the 2D system, where standard capacitance (C)–voltage (V) spectroscopy is unsuitable to investigate the electronic structure of these QDs.  相似文献   

18.
Electron–electron interaction effect of the two-dimensional electron gas (2DEG) in AlxGa1−xN/GaN heterostructures has been investigated by means of magnetotransport measurements at low temperatures. From the temperature dependence of the longitudinal conductivity of the heterostructures, a clear transition region has been observed. Based on the theoretical analysis, we conclude that this region corresponds to the transition from the diffusive regime to the ballistic regime of the 2DEG transport property. The interaction constant is determined to be −0.423, which is consistent with the theoretical prediction. However, the critical temperature for the transition, which is 8 K in AlxGa1−xN/GaN heterostructures, is much higher than the theoretical prediction.  相似文献   

19.
The Shubnikov-de Haas (S-dH) results at 1.5 K for AlxGa1−xN/AlN/GaN heterostructures and the fast Fourier transformation data for the S-dH data indicated the occupation by a two-dimensional electron gas (2DEG) of one subband in the GaN active layer. Photoluminescence (PL) spectra showed a broad PL emission about 30 meV below the GaN exciton emission peak at 3.474 eV that could be attributed to recombination between the 2DEG occupying in the AlN/GaN heterointerface and photoexcited holes. A possible subband structure was calculated by a self-consistent method taking into account the spontaneous and piezoelectric polarizations, and one subband was occupied by 2DEG below the Fermi level, which was in reasonable agreement with the S-dH results. These results can help improve understanding of magnetotransport, optical, and electronic subband properties in AlxGa1−xAs/AlN/GaN heterostructures.  相似文献   

20.
The J-V characteristics of AltGa1 tN/GaN high electron mobility transistors(HEMTs) are investigated and simulated using the self-consistent solution of the Schro¨dinger and Poisson equations for a two-dimensional electron gas(2DEG) in a triangular potential well with the Al mole fraction t = 0.3 as an example.Using a simple analytical model,the electronic drift velocity in a 2DEG channel is obtained.It is found that the current density through the 2DEG channel is on the order of 1013 A/m2 within a very narrow region(about 5 nm).For a current density of 7 × 1013 A/m2 passing through the 2DEG channel with a 2DEG density of above 1.2 × 1017 m-2 under a drain voltage Vds = 1.5 V at room temperature,the barrier thickness Lb should be more than 10 nm and the gate bias must be higher than 2 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号