首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
The magnetic dipole transition I(52P12-52P32) at 1.3152 μm is shown to be enhanced by collisions of the metastable iodine atoms with the parent RI molecules CF3I, C2F5I, i-C3F7I and n-C3F7I. The enhancing mechanism is exciplex emission of the RI·I(52P12) molecule at 1.3 μm, with different rates for each iodide. The influence of this effect on the measurement of the quantum yields to I(52P12) and of the respective reaction rates by infrared fluorescence is discussed.  相似文献   

2.
The CO2-laser-induced infrared multiple photon decomposition of natural CBr2F2 in the presence of oxygen has been examined as a function of pulse number (30–1500), reactant pressures (CBr2F2, 10–150 Torr and O2, 5–90 Torr), laser line [9P(8)–9P(32)], and laser fluence (1–3 J cm–2) to optimize irradiation conditions for 13C-enrichment. CF2O was the main carbon containing product and afterwards was converted into CO2 via hydrolysis. A small amount of C2Br2F4 was detected only under extreme conditions, for example, at high laser fluences or wavenumbers close to an absorption band. The 13C-atom fraction of the final product CO2 was found to be 20–80%, depending on experimental conditions. The two-stage IRMPD process proposed previously has been examined in further detail in the present study. First, CBr2F2 containing about 30% of 13C was prepared in the 13C-selective IRMPD of natural CHClF2 in the presence of Br2. The second-stage IRMPD of the CBr2F2 in the presence of oxygen under selected conditions resulted in the high enrichment of 13C beyond 90%.  相似文献   

3.
We have measured IR absorption spectra of solutions C2F6 in CF4 (T = 178 K) and CF4 in C2F6 (T = 173 K) in the overtone range of the spectrum. We have studied how the resonance dipole-dipole interaction affects the formation of contours of bands that correspond to transitions to states involving the vibrations ν10(C2F6) and ν3(CF4), which are strong in the dipole absorption. For the system C2F6 in liquid CF4, the state ν2 + ν10(C2F6) resonantly interacts with the state ν2(C2F6) + ν3(CF4), and, for the system CF4 in liquid C2F6, the state ν1 + ν3(CF4) resonantly interacts with the state ν1(CF4) + ν10(C2F6). The contours of the bands ν2 + ν10 (C2F6) in the spectrum of the mixture with CF4 and of the bands ν1 + ν3(CF4) in the spectrum of the mixture with C2F6 have been calculated.  相似文献   

4.
C2F3Cl is photolyzed with a TEA-CO2 laser at 1050.44 cm–1 with focussed fluences up to 280 J/cm2. The stable products in the IRMPD of C2F3Cl are determined for up to 10 Torr of C2F3Cl being photolyzed both neat and with added O2. C2F4 and trans-C2F2Cl2 are found to occur in the greatest yield though C3F5Cl, C3F4Cl2, C4F7Cl, and C2F3Cl3 also appear to be primary products. When O2 is present F2CO, FClCO, and CF2ClCOF are the exclusive products. The formation of these products are for the most part consistent with a carbene formation dissociation mechanism for C2F3Cl IRMPD. C2F3Cl3 may best be explained by another mechanism competitive with carbene formation. Many products attributed to secondary photolysis mechanisms are observed for long photolysis times.This work was performed at Department of Chemistry and chemical Engineering, Michigan Technological University, Houghton, MI 49931, USA  相似文献   

5.
The adsorption and reaction behaviors of CF3CH2I on Ag(111) were systematically studied by density functional theory (DFT) calculations. Physical adsorption of CF3CH2I on Ag(111) occurs due to the weak interactions between surface Ag atoms and iodine atom of CF3CH2I; while strong chemisorption occurs for CF3CH2 fragment on Ag(111). Electronic analysis indicates that the singly occupied molecular orbital (SOMO) of CF3CH2 strongly interacts with the surface Ag atoms. It is very interesting to find that the most stable structures of CF3CH2 on Ag(111) locate at the top site, instead of the hollow sites. This might be attributed to the facts that CF3CH2 adsorbed at the top site will maximize the sp3-type hybridization, and the possible weak interaction between the fluorine lone pair electrons of p orbitals for CF3CH2 and surface Ag(111) occurs, which is supported by the charge density difference (CDD) analysis with a low isosurface value. We propose that the charge density difference (CDD) analysis with a high or low isosurface value can be widely applied to analyze the strong or weak electronic interactions upon adsorption. Transition state calculations suggested that the energy barrier of CF bond rupture for CF3CH2I on Ag(111) (1.44 eV) is much higher than that of CI bond breakage for CF3CH2I (0.43 eV); and the activation energy of the CF bond dissociation for CF3CH2(a) is 0.67 eV.  相似文献   

6.
Product state distributions of the CaF products from the thermal crossed beam reactions Ca + F2 and Ca + NF3 have been measured using laser induced fluorescence (LIF) techniques. We obtain information about the rotational and vibrational distributions by generating synthetic band profiles and comparing them with those observed. The inverted vibrational distributions indicate direct reaction mechanisms. For Ca + F2 the fractionf′ of energy is nearly half going into product translation and the remainder being devided nearly equally between product rotation and vibration. For Ca + NF3 the largest fraction of the available reaction exoergicity goes into vibrational excitation of the newly formed CaF products. In addition, we have probed the rotational polarization of CaF product molecules. This gives direct information on the role of angular momentum alignment in reactive scattering.  相似文献   

7.
分别采用多组态自洽场方法和二阶多组态准简并微扰论方法,计算了烷基碘化物分子CF3I和C2H2F3I沿C—I键的绝热势能曲线和垂直激发能. 结果发现,这两种分子的低激发态均为排斥态;基态的解离能分别为2.473eV和2.835eV,其中前者与实验结果符合较好. 关键词: 烷基碘化物分子 解离能 势能曲线  相似文献   

8.
Several agents are under consideration to replace CF3Br for use in suppressing fires in aircraft cargo bays. In a Federal Aviation Administration (FAA) performance test simulating the explosion of an aerosol can, however, the replacements, when added at sub-inerting concentrations, have all been found to create higher pressure rise than with no agent, hence failing the test. Thermodynamic equilibrium calculations as well as perfectly-stirred reactor (PSR) simulations with detailed reaction kinetics, are performed for one of these agents, C6F12O (Novec 1230), to understand the reasons for the unexpected enhanced combustion rather than suppression. The high pressure rise with added agent is shown to depend on the amount of agent, and can only occur if a large fraction of the available oxidizer in the chamber is consumed, corresponding to stoichiometric proportions of fuel, oxygen, and agent. A kinetic model for the reaction of C6F12O in hydrocarbon–air flames has been developed. Stirred-reactor simulations predict that at higher agent loadings, the inhibition effectiveness of C6F12O is relatively insensitive to the overall stoichiometry, and the marginal inhibitory effect of the agent is greatly reduced, so that the mixture remains flammable over a wide range of conditions corresponding to those of the FAA test. The present findings are consistent with and support the earlier analyses for C2HF5 and CF3Br, which were also evaluated in the FAA test.  相似文献   

9.
A method of investigating reactions of excited and unexcited atoms is discussed. It is based on pulsed photolysis of molecules with simultaneous passage of laser radiation through the working medium. The method proposed is used to investigate the reactions that accompany the photolysis of the molecules RI(CF3I, n-C3F7I, i-C3F7I). The rate constants of the recombination of iodine atoms into I2 in the presence of RI molecules are calculated for the atoms I(2P3/2) and I*(2P1/2), as are the recombination constants of the radicals R into R2 and with the atoms I*(2P1/2) and I(2P3/2) into the RI molecule. It is shown that the I(2P3/2) atoms are much more active in the recombination into Ia and RI than the I*(2P1/2) atoms. The role of the investigated reactions in the kinetics of a photodissociation iodine laser (PDIL) is discussed. The results are compared with the published data.  相似文献   

10.
To quantify the changes in the geometric shielding effect in a molecule as the incident electron energy varies, an empirical fraction, which represents the total cross section contributions of shielded atoms in a molecule at different energies, is presented. Using this empirical fraction, the total cross sections for electron scattering by CH4, C2H6, C2H3F3, C2H4, C2F4, C2Cl4 and C2Cl2F2 are calculated over a wide energy range from 30 to 5000 eV by the additivity rule model at the Hartree-Fock level. The quantitative total cross sections are compared with those obtained by experiment and other theories where available. Good agreement is attained above 100 eV.  相似文献   

11.
The singlet and triplet potential energy surfaces for the reactions CF3O2 + I (1), CF3O + OI (2) and CF3 + OIO (3) are investigated using ab initio quantum mechanical methods. Four important isomeric energy minima were found, three on the singlet surface, CF3OOI, CF3OIO and CF3IO2 and one on the triplet surface 3CF3OIO. CF2O + FOI are shown to be the most probable products for all reactions, CF3O +I and CF3O + O(3P) are possible for reactions (2) and (3) while the reaction pathway leading to CF3O +OI is also possible for reaction (3).  相似文献   

12.
Angular distribution measurements of KX reactive scattering of a potassium dimer K2 beam by I2 and by a series of halomethane molecules are reported. The K2 + I2 reactive scattering is similar to that previously observed for K2 + Br2. The predominant reaction path yields K + KI + I with the K and KI product recoiling in the forward direction. However, the forward peak of the KI differential cross section is lower than that for K from K2 + I2 and is broader than that observed for KBr from K2 + Br2. This is attributed to slow dissociation of the I 2 - ion formed in the electron jump mechanism previously proposed for K2 + Br2. In the halomethane reactions, both alkali atoms of the K2 dimer become bound alkali halide molecules in all reactive collisions, despite the direct dynamics of the corresponding supersonic K atom reactions. Thus, these reactions provide compelling evidence for a second electron jump mechanism, previously proposed for the reactions of K2 dimers with polyhalide molecules. The differential cross sections for the K2 dimer plus halomethane reactions indicate an osculating collision complex with a lifetime at least comparable to its rotational period, perhaps much longer. This reaction complex is identified with the doubly ionic state formed by the second electron jump transition.  相似文献   

13.
As-deposited HfO2 films were modified by CHF3, C4F8, and mixed C4F8/O2 plasmas in a dual-frequency capacitively coupled plasma chamber driven by radio frequency generators of 60 MHz as the high frequency (HF) source and 2 MHz as the low frequency source (60/2 MHz). The influences of various surface plasma treatments under CHF3, C4F8, and C4F8/O2 were investigated in order to understand the chemical and structural changes in thin-film systems, as well as their influence on the electrical properties. Fluorine atoms were incorporated into the HfO2 films by either CHF3 or C4F8 plasma treatment; meanwhile, the C/F films were formed on the surface of the HfO2 films. The formation of C/F layers decreased the k value of the gate stacks because of its low dielectric constant. However, the addition of O2 gas in the discharge gases suppressed the formation of C/F layers. After thermal annealing, tetragonal HfO2 phase was investigated in both samples treated with CHF3 and C4F8 plasmas. However, the samples treated with O-rich plasmas showed monoclinic phase, which indicated that the addition of O plasmas could influence the Hf/O ratio of the HfO2 films. The mechanism of the t-HfO2 formation was attributed to oxygen insufficiency generated by the incorporation of F atoms. The capacitors treated with C4F8/O2 plasmas displayed the highest k value, which ascribed that the C/F layers were suppressed and the tetragonal phase of HfO2 was formed. Good electrical properties, especially on the hysteresis voltage and frequency dispersion, were obtained because the bulk traps were passivated by the incorporation of F atoms. However, the H-related traps were generated during the CHF3 plasma treatments, which caused the performance degradation. All the treated samples showed lower leakage current density than the as-deposited HfO2 films at negative bias due to the reduced trap-assisted tunneling by the incorporation of F to block the electrons transferring from metal electrode to the trap level.  相似文献   

14.
Polyethylene oxide (PEO) based polymer electrolytes with BaTiO3 as filler and Li(C2F5SO2)2N as salt have been examined in lithium polymer batteries. The aluminum disolution potential in PEO-Li(C2F5SO2)2N was estimated to be 4.1 V vs. Li/Li+ at 80 °C, which was compared to that of 3.8 V vs. Li/Li+ in PEO-Li(CF3SO2)2N. The electrical conductivity of the system was measured as a function of O/Li ratio. The highest conductivity was observed in O/Li=8. The conductivity was 1.65×10−3 S/cm at 80 °C and 1.5×10−5 S/cm at 25 °C. The interfacial resistance of Li/polymer electrolyte/Li annealed at 80 °C for 15 days was lower than 100 Ωcm2. Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16 – 22, 2001.  相似文献   

15.
The thermal chemistry of perfluoroethyl iodide (C2F5I) adsorbed on Cu(1 1 1) has been investigated by temperature-programmed reaction/desorption (TPR/D), reflection-absorption infrared spectroscopy (RAIRS), and X-ray photoelectron spectroscopy (XPS). I 4d and F 1s XPS spectra show that dissociative adsorption of C2F5I to form the surface-bound perfluroethyl (Cu-C2F5) moieties occurs at very low temperature (T < 90 K), while the C-F bond cleavage in adsorbed perfluroethyl (Cu-C2F5) begins at ca. 300 K. XPS and TPR/D studies further reveal that the reactions of βCF3αCF2(ad) on Cu(1 1 1) are strongly dependent on the surface coverage. At high coverages (?0.16 L exposure), the adsorbed perfluroethyl (Cu-C2F5) evolves, via α-F elimination, into the surface-bound tetrafluoroethylidene moieties (CuCF-CF3) followed by a dimerization step to form octafluoro-2-butene (CF3CFCFCF3) at 315 K as gas product. The surface-bound (Cu-C2F5) decomposes preferentially, at low coverages (?0.04 L), via consecutive α-F abstraction to afford intermediate, trifluoroethylidyne (CuCCF3), resulting in the final coupling reaction to yield hexafluoro-2-butyne (CF3CCCF3) at 425 K. However, at middle coverages (ca. 0.08-0.16 L exposure), the adsorbed perfluroethyl (Cu-C2F5) first experiences an α-F elimination and then prefers to loss the second F from β position to yield the intermediate of Cu-CF2-CFCu (μ-η,η-perfluorovinyl), which may further evolve into hexafluorocyclobutene (CF2CFCFCF2) at 350 K through cyclodimerization reaction. Our results have also shown that the surface reactions to yield the products, CF3CFCFCF3 and CF3CCCF3, obey first-order kinetics, whereas the formation of CF2CFCFCF2 follows second-order kinetics.  相似文献   

16.
Infrared intensity formulae for C2H6 and C2D6 are derived following the first order approximations. Using the experimental intensities in the intensity equations, the first order coefficients are calculated. They are observed to be negligible compared to the accuracy limits within which the intensities can be measured. Correlating the experimental intensities to the intensity expressions of C2F6 and following the zero-order approximations, the bond dipole moment μ and its derivative e are calculated for the C–F bond. Substituting these in the intensity equations of CF4, transferability of the bond moment parameters is discussed.  相似文献   

17.
Angular distribution measurements of reactive scattering of a supersonic potassium atom beam by a series of molecules are reported with initial kinetic energy (~ 5 kcal mole-1) above the thermal energy range. The narrow Laval nozzle velocity distribution gives improved resolution over thermal energy measurements. Total reaction cross sections are found to decrease with energy. Differential reaction cross sections for Br2, BrCN and CCl4 show increased forward scattering compared with thermal energies but for CH3I there is no change to within experimental error. The BrCN scattering is compatible with spectator-stripping dynamics, though this limit has not been reached in the Br2 scattering. The SnCl4 differential reaction cross section appears not to be compatible with a single peak in the centre of mass recoil velocity distribution. It is suggested that high and low velocity contributions to the intensity may arise from a long-lived collision complex dissociating by two reaction paths.  相似文献   

18.
Double photoionisation spectra of HI, CH3I and CF3I have been measured by the TOF-PEPECO technique, providing complete information on electron energy distributions. The lowest energy states of HI2+ and CH3I2+ are identified and their vibrations are resolved. Possible reasons for the markedly different CF3I spectrum are discussed. There is evidence for atomic autoionisation of iodine as a pathway contributing to the double photoionisation.  相似文献   

19.
Relative energies of C60FN fluorofullerenes are reproduced reasonably well at the B3LYP/6- 311G** level of theory employed in conjunction with isodesmic transfluorination reactions, although overestimation of steric repulsions among non-bonded atoms is evident for species with larger values of N. On the other hand, the MNDO method is found to be less suitable for studies of fluorofullerene thermochemistry. The gas-phase standard enthalpy of formation of the C60F18 species is predicted to lie between ?1500 kJ mol?1 and ?1400 kJ mol?1.  相似文献   

20.
The mechanisms of inelastic scattering of low-energy protons with a kinetic energy of 2–7 eV by C6H6, C6F12, C60, and C60F48 molecules are studied using the methods of quantum chemistry and nonempirical molecular dynamics. It is shown that, for the C6H6 + proton and C60 + proton systems, starting from a distance of 6 Å from the carbon skeleton, the electronic charge transfer from the aromatic molecule to H+ occurs with a probability close to unity and transforms the H+ ion into a hydrogen atom and the neutral C6H6 and C60 molecules into cation radicals. The mechanism of interaction of low-energy protons with C6F12 and C60F48 molecules has a substantially different character and can be considered qualitatively as the interaction between a neutral molecule and a point charge. The Coulomb perturbation of the system arising from the interaction of the noncompensated proton charge with the Mulliken charges of fluorine atoms results in an inversion of the energies of the electronic states localized, on the one hand, on the positively charged hydrogen ion and, on the other hand, on the C6F12 and C60F48 molecules. As a result, the neutral molecule + proton state becomes the ground state. In turn, this inversion makes the electronic charge transfer energetically unfavorable. Quantum-chemical and molecular-dynamics calculations on different levels of theory showed that, for fluorine derivatives of some aromatic structures (C6F12, C60F48), the barriers to proton penetration through carbon hexagons are two to four times lower than for the corresponding parent systems (C6H6, C60). This effect is explained by the absence of active π-electrons in the case of fluorinated molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号