首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
朱雄伟 《中国物理 C》2002,26(3):286-289
模拟研究了1.6个腔、高梯度的W-band光阴极微波电子枪系统,该系统能产生和加速300pC的电子束团.设计系统由频率91.392GHz光阴极微波电子枪以及频率91.392GHz行波加速结构组成.基于射频直线加速器标度律与数值模拟结果,设计系统能产生能量1.74MeV,电量300pC,束团长度0.72ps,归一化横向发射度0.55mm·mrad的电子束团.研究了高频、高梯度下的束流动力学.由于高梯度,有质动力效应在束流动力学中起重要作用,且由于横向与纵向之间的耦合,在基次空间谐波的情形下,仍然存在着有质动力聚焦效应.  相似文献   

2.
To relax the high-speed requirement imposed on the gradient system used in solid-state proton imaging, we propose two simple modifications of the magic echo imaging sequence, TREV-16TS. In the first modification, the applied gradient is inverted in the middle of the RF irradiation; the second modification utilizes a sinusoidal gradient synchronized with the RF sequence. It is estimated by experiments that as long as the RF amplitude is at least about 10 times stronger than the resonance offset induced by the gradient, the spatial resolution is not degraded significantly by the line narrowing deterioration due to the gradient applied during the on-resonance RF irradiation. The modifications allow commercially available standard gradients to be used for the magic echo imaging of solids.  相似文献   

3.
In this work, two distinct approaches to the tailoring of selective radiofrequency (RF) pulses were applied to a cos-sinc pulse of the DIGGER sequence used in localized spectroscopy. Ideally, three such pulses combined with a gradient in each direction destroy the Mz component of the magnetization everywhere but in the volume of interest. In the first approach, the optimal RF amplitude modulation is found by minimizing the difference between the ideal and the computed Mz profiles. In the second strategy, the RF pulse envelope is adjusted by optimization of the tip angle profile. Computed slice profiles optimized by each of these methods have been compared to experimental results. Simulations as well as experiments show that the second approach, which optimizes tip angles, is the most efficient.  相似文献   

4.
Here, we describe the design and performance characteristics of a low temperature probe for dynamic nuclear polarization (DNP) experiments, which is compatible with demanding multiple-pulse experiments. The competing goals of a high-Q microwave cavity to achieve large DNP enhancements and a high efficiency NMR circuit for multiple-pulse control lead to inevitable engineering tradeoffs. We have designed two probes-one with a single-resonance RF circuit and a horn-mirror cavity configuration for the microwaves and a second with a double-resonance RF circuit and a double-horn cavity configuration. The advantage of the design is that the sample is in vacuum, the RF circuits are locally tuned, and the microwave resonator has a large internal volume that is compatible with the use of RF and gradient coils.  相似文献   

5.
The purpose of this study was to investigate and to optimize the performance of two-dimensional spatially selective excitation pulses used for navigator applications on a clinical scanner. The influence of gradient imperfections, off-resonance effects, and incomplete k-space covering on the pencil beam-shaped spatial excitation profile of the 2D RF pulse was studied. The studies involved experiments performed on phantoms and in vivo. In addition, simulations were carried out by numerical integration of the Bloch equations. The accuracy of positioning of the pencil beam was increased by a factor of three by employing a simple correction scheme for the compensation of gradient distortions. The spatial selectivity of the 2D RF pulse was improved by taking sampling density corrections into account. The 2D RF pulse performance was found to be sufficient to monitor the diaphragm motion even at moderate gradient strength. For applications, where a high spatial resolution is required or a less characteristic contrast is present a strong gradient system is recommended.  相似文献   

6.
A systematic experimental and numerical evaluation of several basic approaches to multiple-quantum magic angle spinning (MQMAS) NMR is presented for spin-32 nuclei. The approaches use identical MQ excitation, via a single RF pulse of high power, and three types of methods for conversion to observable coherence: (a) nutation by strong continuous wave pulse; (b) rotation-induced adiabatic coherence transfer (RIACT), and (c) fast amplitude modulation (FAM-1). The optimization strategies and maximum achievable MQMAS efficiencies of (87)Rb in RbNO(3) and LiRbSO(4) are investigated using several coherence transfer schemes under a wide range of experimental parameters. These parameters include the strength of the RF magnetic field nu(RF), the sample rotation speed nu(R), the length of the conversion period, and the modulation frequency in FAM-1. The data provide new insights into the spin dynamics involved in these techniques and the experimental guidelines for achieving the best sensitivity. The RF requirements for maximum efficiency of conversion depend on the method to be used. In general, FAM-1 performs better than the nutation and RIACT methods in terms of efficiency and off-resonance behavior, especially when nu(RF) is small compared to the quadrupole frequency nu(Q). The experiments performed using nutation, RIACT, and FAM-1 methods yield similar resolution in the isotropic dimension, regardless of nu(RF).  相似文献   

7.
近年来,为提高磁共振成像(MRI)信号信噪比(SNR)、缩短成像时间,同时多层成像技术受到了极大的关注.为了实现同时多层的选择性激发,现有的多层成像序列大多使用组合射频(RF)脉冲,该脉冲可包含多个独立的幅值相同相位不同的简单脉冲,由于其采用简单的线性叠加方法,该类脉冲射频功率随脉冲数量呈现平方增长,因而应用受限.针对这一问题,基于自旋动力学和优化控制原理,本文提出了一种针对同时多层MRI的选择性射频脉冲的数值优化方法,该方法充分运用射频脉冲的调控机制,获得优化脉冲,并配合层选梯度,可实现任意层厚、层间距、层数的同时高效选择性激发.最后,通过数字模体的同时多层模拟成像实验验证了优化脉冲的有效性.  相似文献   

8.
用模拟计算方法,研究了热阴极微波电子枪的束流动力学行为,采用笛卡尔坐标,编制了准三维模拟计算程序──HOTGUN.计算中除考虑了射频场外,还充分考虑了空间电荷效应(空间电荷场为轴对称场)、肖特基效应及稳态负载效应等.文中给出了HOTGUN程序与PARMELA部分模拟结果及中科院高能所自由电子激光室微波电子枪热测实验台部分实验结果的比较,最后以用于北京自由电子激光器的多腔热阴极微波电子枪为例,给出了详细的HOTGUN程序模拟计算结果.  相似文献   

9.
As neutron simulations packages are used for analysis of the expected performance for practically all newly built neutron instruments, possibilities for simulations with polarized neutrons have been relatively underdeveloped.During the last years we developed a new approach for the representation of time-dependent magnetic fields (both in magnitude and direction) for the VITESS simulation package. This allowed us to simulate the neutron spin dynamics in practically all polarized neutron devices (RF neutron flipper, adiabatic gradient RF flipper, the Drabkin resonator, etc.). In this article the above-mentioned VITESS instrument components (modules) will be presented and the simulated performance of a number of polarized neutron scattering instruments (NRSE, MIEZE, SESANS, etc.) will be demonstrated.Thus, we practically complete the polarized neutron suite of the VITESS, which seems sufficient for the simulation of performance of any existing polarized neutron scattering instrument. Future work will be concentrated on developments of dedicated sample modules (kernels) to allow for virtual experiments with VITESS.  相似文献   

10.
In this paper, a calculation routine based on product operator formalism and coherence pathway is presented, which describes t(1) noise and sensitivity in pulsed field gradient experiments. Several examples including the absolute value mode pulsed field gradient COSY, MQF-COSY, MQC, HMQC, and NOESY sequences are investigated to study the t(1) noise stemming from the phase errors of radiofrequency (RF) pulses and the sensitivity affected by RF pulse rotation angles. Our theoretical results indicate that the t(1) noises in P-type COSY, multiple-quantum-filtered (MQF)-COSY, and multiple-quantum coherence (MQC) are lower than those in the N-type corresponding experiments, while in HMQC and NOESY there is no difference in t(1) noise effects between P-type and N-type spectra. Meanwhile, from the calculations, we obtained the optimized RF pulse rotation angles in those sequences. In MQF-COSY, an increase in sensitivity of about 4(cos(2)θ sin(q-1)2θ)(2) - 1 (θ = arc cot can be achieved by using the optimized angles. In MQC, the increase is 2 cos(2)θ sin(q-1)2θ - 1 (θ = arc cot. MQF-COSY experiments are also carried out to support our corresponding theoretical results.  相似文献   

11.
The amplitudes of gradient-echoes produced using static field gradients are sensitive to diffusion of tissue water during the echo evolution time. Gradient-echoes have been used to produce MR images in which image intensity is proportional to the self-diffusion coefficient of water. However, such measurements are subject to error due to the presence of background magnetic field gradients caused by variations in local magnetic susceptibility. These local gradients add to the applied gradients. The use of radiofrequency (RF) gradients to produce gradient-echoes may avoid this problem. The RF magnetic field is orthogonal to the offset field produced by local magnetic susceptibility gradients. Thus, the effect of the local gradients on RF gradient-echo amplitude is small if the RF field is strong enough to minimize resonance offset effects. The effects of susceptibility gradients can be further reduced by storing magnetization longitudinally during the echo evolution period. A water phantom was used to evaluate the effects of background gradients on the amplitudes of RF gradient-echoes. A surface coil was used to produce an RF gradient of between 1.3 and 1.6 gauss/cm. Gradient-echoes were detected with and without a 0.16 gauss/cm static magnetic field gradient applied along the same direction as the RF gradient. The background static field gradient had no significant effect on the decay of RF gradient-echo amplitude as a function of echo evolution time. In contrast, the effect of the background gradient on echoes produced using a 1.6 gauss/cm static field gradient is calculated to be significant. This analysis suggests that RF gradient-echoes can produce MR images in which signal intensity is a function of the self-diffusion coefficient of water, but is not significantly affected by background gradients.  相似文献   

12.
射频超导腔的研究新进展   总被引:1,自引:0,他引:1       下载免费PDF全文
 射频超导谐振腔已经大规模地应用到粒子加速器领域,其优越之处在于它可以在CW模式或长宏脉冲模式下,提供高的加速梯度。射频超导已经成为自由电子激光和能量回收直线加速器的关键技术。经过30多年的研究发展,解决了超导腔的热崩溃、场致发射等诸多关键问题,目前加速梯度已经超过40 MV/m。高加速梯度的获得是射频超导领域的前沿热点,电抛光+低温热处理技术使射频超导腔的加速梯度提高3~4 MV/m。最新发展起来的超导腔的干式处理可以改善超导腔的表面状况,提高超导腔的Q值,抑制次级电子发射效应,有可能成为提高超导腔性能的又一有效手段。  相似文献   

13.
Temporally resolved observation of microscopic structural dynamics of solids with ultrafast electron diffraction (UED) requires extremely short pulsed, highly charged, monoenergetic electron beams with sufficient transverse coherence length of several unit cells of the investigated samples. However, Coulomb repulsion defeats these parameters in free propagation of an electron pulse initially bright on the photo cathode. We demonstrate a new electron pulse compressor design based on a simple and compact RF structure incorporating a pair of gallium arsenide photoconductive semiconductor switches that are triggered by femtosecond laser pulses, thereby providing a longitudinal voltage gradient of up to 20?V/ps. Our proof of principle experiment achieved compression of bunches containing 26,000 electrons to a duration of below 750?fs and a beam diameter of 300???m in the temporal and spatial focus of the device while maintaining the good beam collimation required for time resolved electron diffraction experiments. The simplicity of the compressor provides a strong incentive for its further development toward practical implementation in sub-relativistic UED experiments requiring the highest possible source brightness.  相似文献   

14.
The applicability of RF gradients for suppressing the resonances of uncoupled spins in inverse-detected heteronuclear spectroscopy has been investigated. Pulse sequences were designed which incorporate RF gradients in heteronuclear single-quantum-correlation experiments (HSQC), and they can be divided into three categories based on how the RF gradients are used. In the first type of experiment, the desired coherences are spin locked in the RF-gradient held, while unwanted terms, placed perpendicular to the direction of the RF-gradient held, are dephased. In a second type of experiment, the dephasing action of the gradient and the coherence-transfer RF pulses are combined into a single RF-gradient pulse. A second RF-gradient pulse is then used to rephase the desired spin terms. The third type of experiment uses a period of longitudinal storage of the heteronuclear magnetization, during which time the magnetization of the uncoupled spins is destroyed by an RF-gradient pulse. Experimental results are shown from all three techniques, and the techniques are compared.  相似文献   

15.
In NMR imaging and in vivo spectroscopy, slice selection is usually achieved by applying a frequency-selective RF pulse in the presence of a magnetic field gradient. A serious limitation of this method of slice selection is that, in a system with many different chemical shifts, the selected slice is offset in space for each chemically shifted resonance. In the present study, a composite RF pulse that is insensitive to chemical-shift differences has been developed. The pulse involves applying a RF pulse of desired shape in the presence of an alternating magnetic field gradient, together with hard 180° pulses at each gradient transition. Calculations are presented to show that excitation with the proposed pulse averages the chemical-shift term to zero. An exact calculation for a rectangular RF excitation shape verifies this. Experiments based on observing the RF excitation profiles have been performed to demonstrate the validity of the proposed pulse.  相似文献   

16.
Dissipation of radiofrequency (RF) energy as heat during continuous wave decoupling in solid-state NMR experiment was examined outside the conventional realm of such phenomena. A significant temperature increase could occur while performing dynamic NMR measurements provided the sample contains polar molecules and the sequence calls for relatively long applications of RF power. It was shown that the methyl flip motion in dimethylsulfone (DMS) is activated by the decoupling RF energy conversion to heat during a CODEX pulse sequence. This introduced a significant bias in the correlation time–temperature dependency measurement used to obtain the activation energy of the motion. By investigating the dependency of the temperature increase in hydrated lead nitrate on experimental parameters during high-power decoupling one-pulse experiments, the mechanisms for the RF energy deposition was identified. The samples were heated due to dissipation of the energy absorbed by dielectric losses, a phenomenon commonly known as “microwave” heating. It was thus established that during solid-state NMR experiments at moderate B0 fields, RF heating could lead to the heating of samples containing polar molecules such as hydrated polymers and inorganic solids. In particular, this could result in systematic errors for slow dynamics measurements by solid-state NMR.  相似文献   

17.
At higher B(0) fields, specific absorption rate (SAR) deposition increases. Due to maximum SAR limitation, slice coverage decreases and/or scan time increases. Conventional selective RF pulses are played out in conjunction with a time independent field gradient. Variable rate selective excitation (VERSE) is a technique that modifies the original RF and gradient waveforms such that slice profile is unchanged. The drawback is that the slice profile for off-resonance spins is distorted. A new VERSE algorithm based on modeling the scaled waveforms as a Fermi function is introduced. It ensures that system related constraints of maximum gradient amplitude and slew rate are not exceeded. The algorithm can be used to preserve the original RF pulse duration while minimizing SAR and peak b1 or to minimize the RF pulse duration. The design is general and can be applied to any symmetrical or asymmetrical RF waveform. The algorithm is demonstrated by using it to (a) minimize the SAR of a linear phase RF pulse, (b) minimize SAR of a hyperbolic secant RF pulse, and (c) minimize the duration of a linear phase RF pulse. Images with a T1-FLAIR (T1 FLuid Attenuated Inversion Recovery) sequence using a conventional and VERSE adiabatic inversion RF pulse are presented. Comparison of images and scan parameters for different anatomies and coils shows increased scan coverage and decreased SAR with the VERSE inversion RF pulse, while image quality is preserved.  相似文献   

18.
使用梯度脉冲压制水峰已广泛地应用于生物样品的NMR实验,一个选择性90°脉冲接一个纵向的散相梯度脉冲破预期能得到好的去水峰效果,然而基于下面的三方面的原因,梯度脉冲去水峰的效果受到了限制,其一是梯度散相的动力学过程表明总磁化强度的衰减是需要时间的,其二是纵向弛豫T1机制在梯度脉冲作用过程中不可避免,其三是辐射阻尼效应力图将磁化强度推向z方向.在本文中我们定量地分析了这三种机制在压水峰过程中的作用.  相似文献   

19.

Purpose

TRASE (Transmit Array Spatial Encoding) MRI uses RF transmit phase gradients instead of B0 field gradients for k-space traversal and high-resolution MR image formation. Transmit coil performance is a key determinant of TRASE image quality. The purpose of this work is to design an optimized RF transmit phase gradient array for spatial encoding in a transverse direction (x- or y- axis) for a 0.2 T vertical B0 field MRI system, using a single transmitter channel. This requires the generation of two transmit B1 RF fields with uniform amplitude and positive and negative linear phase gradients respectively over the imaging volume.

Materials and Methods

A two-element array consisting of a double Maxwell-type coil and a Helmholtz-type coil was designed using 3D field simulations. The phase gradient polarity is set by the relative phase of the RF signals driving the simultaneously energized elements.

Results

Field mapping and 1D TRASE imaging experiments confirmed that the constructed coil produced the fields and operated as designed. A substantially larger imaging volume relative to that obtainable from a non-optimized Maxwell-Helmholtz design was achieved.

Conclusion

The Maxwell (sine)–Helmholtz (cosine) approach has proven successful for a horizontal phase gradient coil. A similar approach may be useful for other phase-gradient coil designs.  相似文献   

20.
The study of rotational and translational diffusion requires the measurement of both T2 and apparent diffusion coefficient (ADC), quantities that are typically measured in separate experiments. The exploitation of echoes generated via multiple coherence transfer pathways offers an opportunity for measuring T2 and ADC values simultaneously in a single experiment. A series of RF pulses can generate multiple echoes via different coherence pathways with each one being uniquely encoded. Here, we demonstrate one pulse sequence that uses an initial theta; RF pulse to generate three coherence orders (C = 0, -1, +1). In the particular version of the method discussed here only two are used (C = 0, +1). Each order is encoded with a different b value from which the ADC is derived. The coherence order echo C = 0 is refocused to quantify T2. The performance of the method--dubbed simultaneous measurement of ADC and relaxation time (SMART)--is demonstrated on a set of samples differing in T2 and ADC achieved by varying the relative volume fractions in mixtures of gadolinium-doped H2O and D2O. The regional SMART derived T2 and ADC agree well with those obtained with conventional double-spin-echo and pulsed gradient spin-echo methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号