首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optical absorption and EPR spectra of Mn2+ ion doped in cadmium maleate dihydrate have been theoretically investigated by diagonalizing the complete energy matrices for a d5 configuration ion in a trigonal ligand-field. According to the suggestion of the optical absorption studies, we assume that the Mn2+ ion enters the host lattice interstitially and the distorted octahedral symmetry for the impurity ion is trigonal. Moreover, the local lattice structure parameters of the system are determined. The results show that the six oxygen ions around the Mn2+ ion are at the same distance R=2.115 ?, and there are three Mn-O bonds forming an angle θ1 of 66.26° with the C3-axis and three others forming an angle θ2 of 43.40°.  相似文献   

2.
In this paper, the relationships between the optical spectra and local lattice structure for Mn5+ in a Sr10(VO4)6F2 crystal are established by the crystal- and ligand-field theory. The effect of spin–orbital coupling between the central 3d2 ions and ligand ions has been considered in the full energy matrix. Using the matrix and superposition model formula, we have calculated the optical spectra and local lattice structure parameters of Mn5+ in Sr10(VO4)6F2 with a C3v system. The calculated results are in good agreement with the observed values. In addition, the trigonal compressed distortions of the (MnO4)3? centers in Sr10(VO4)6F2 crystals are also obtained from the calculations.  相似文献   

3.
Two lead-phosphate glass systems doped with both copper and vanadium ions in different ratios were studied by EPR (electron paramagnetic resonance) method. EPR spectra and parameters (g = 2.44, g = 2.08 andA = 117.6 · 10−4 cm−1) obtained for x(CuO · V2O5)(l−x)[2P2O5 · PbO] glasses withx ≤ 10 mol% suggest a tetrahedral (Td) coordination of Cu2+ ions and not a tetragonally elongated octahedron as has been assumed in previous works. The ground state of the paramagnetic electron is thed xy copper orbital with a 4pz contribution of 6%. For 20 ≤x ≤ 40 mol% a broad line (ΔB = 307 G) characteristic for clustered ions appears atg = 2.18. The V4+ ions are evidenced only in the spectra of x(CuO · 2V2O5)(1 −x)[2P2O5 · PbO] glasses and the resonance parameters suggest a pentacoordinated C4v local symmetry for these ions. The hyperfine structures characteristic for Cu2+ and V4+ ions disappear for 10 ≤x ≤ 40 mol% due to the mixed exchange Cu2+−V4+ pair formation in these glasses.  相似文献   

4.
The dielectric properties, X-ray emission spectra, and M?ssbauer effect in ceramics made of PbFe1/2Nb1/2O3 (PFN) compound were studied. The relaxation dynamics revealed above Curie temperature TC at a frequency of 3 × 10−2–105 Hz is described in detail. Analysis of the X-ray emission and M?ssbauer spectra showed that at room temperature (T = 300 K), the iron ions in PFN are mainly in the high-spin valence state Fe3+. The M?ssbauer spectral parameters obtained at T = (300, 353, and 393 K) indicate an octahedral environment for Fe3+ in both the ferroelectric and paraelectric phases.  相似文献   

5.
The spin-transition (1A1?5T2) behaviour of a new mononuclear iron(II) compound [FeII(L)3][PF6]2[L = 2-[3-(2′-pyridyl)pyrazole-1-ylmethyl]pyridine] has been investigated by 57Fe Mössbauer spectroscopy. Analysis of the Mössbauer spectra revealed low value of the quadrupole splitting of the high-spin state which reflects iron(II) to be in nearly cubic lattice site. Mössbauer spectra under light show the light-induced excited spin state trapping effect and the observed quadrupole splitting of the metastable high-spin state is found little sensitive to the high-spin fraction value. DFT calculations are in progress to document the almost cubic nature of the ligand-field acting on the iron atom.  相似文献   

6.
A Cu2+-doped single crystal of catena-trans-bis(N-(2-hydroxyethyl)-ethylenediamine) zinc(II)-tetra-m-cyanopaladate(II) [ZnPd(CN)4(C4H12N2O2)] complex has been investigated by electron paramagnetic resonance (EPR) technique at room temperature. EPR spectra indicate that Cu2+ ions substitute for magnetically equivalent Zn2+ ions and form octahedral complexes in [ZnPd(CN)4(C4H12N2O2)] hosts. The crystal field affecting the Cu2+ ion is nearly axial. The optical absorption studies show two bands at 322 nm (30864 cm−1) and 634 nm (15337 cm−1) which confirm the axial symmetry. The spin Hamiltonian parameters and the relevant wave function are determined.  相似文献   

7.
王辉  邝小渝  毛爱杰 《物理学报》2010,59(5):3450-3454
基于配位场理论,建立d3组态离子在三角晶场中的完全能量矩阵,采用完全能量矩阵的对角化计算方法,研究了绿宝石晶体Cr3+:Be3Al2(SiO3)6的光谱和EPR谱,理论值与实验值符合得很好.通过分析绿宝石晶体中(CrO6)9-团簇的光谱和EPR谱,研究了配体在络合物中的极化现象.结果表明由于周围配位环境的影响,绿宝石晶体中(CrO< 关键词: 3+:Be3Al2(SiO3)6体系')" href="#">Cr3+:Be3Al2(SiO3)6体系 光谱 EPR谱 局域结构极化  相似文献   

8.
The combined results of spectrophotometric measurements and e.s.r. spectra, as well as those obtained from potentiometric titration studies, are used to determine the structure of the individual complex species formed between copper(II) ion and 1-amino-3-methylthiopropane-phosphonic acid (α-MetP) in aqueous solution. The e.s.r. parameters are typical for CuN2O2 coordination geometries. The d-d absorption spectrum of [Cu(α-MetP)2]2-chromofore in aqueous solution has been treated by the Angular Overlap Model in C2h, symmetry. Low-symmetry splittings of the broad asymmetric absorption band in the measured spectrum were found by Gaussian analysis. The effect of the σ-and π-bonding of bidentate ligand upon the central ion d-orbital energies is destribed in a ligand-field framework.  相似文献   

9.
The anisotropy spin-orbit coupling matrices for a d5 configuration ion in a trigonal ligand-field have been established. On basis of the anisotropy spin-orbit coupling matrices, the ground state zero-field splitting of the Fe3+ ions in ilmenite-structure MgTiO3:Fe3+ system has been studied. The calculated results show that the anisotropy of Fe3+ ions in the diamagnetic ilmenite MgTiO3 is important and the EPR parameters depend sensitively on the anisotropy divergent parameter. Moreover, the effect of the anisotropy divergent parameter on the second-order parameter D is obviously larger than that on the fourth-order parameter (a-F). Based on this point, the local lattice structure of Fe3+ ion in MgTiO3:Fe3+ system is determined by diagonalizing the complete energy matrices for a d5 configuration ion in a trigonal ligand-field and considering the second-order as well as the fourth-order EPR parameters D and (a-F) simultaneously. Our results are consistent with the experimental proposal that Fe3+ ions may locate at both the Mg2+ and Ti4+ sites.  相似文献   

10.
The electron paramagnetic resonance spectra of KTaO3: Mn nanocrystalline powders in the temperature range from 77 to 620 K have been measured and studied for the first time. The change observed in the spectra has been investigated as a function of the doping level. The doping regions in which Mn2+ ions are individual paramagnetic impurities have been established, as well as the regions where the dipole-dipole and exchange interactions of these ions begin to occur. The spin-Hamiltonian constants for the spectrum of non-interacting individual Mn2+ ions have been determined as follows: g = 2.0022, D = 0.0170 cm−1, and A = 85 × 10−4 cm−1. A significant decrease in the axial constant D in the KTaO3: Mn nanopowder, as compared to the single crystal, has been explained by the remoteness of the charge compensator from the paramagnetic ion and by the influence of the surface of the nanoparticle. It has been assumed that the Mn2+ ions are located near the surface and do not penetrate deep into the crystallites.  相似文献   

11.
Polarized Raman and IR spectra of a PbB4O7 single crystal were measured. The obtained spectra are discussed within the factor group approach for the orthorhombic P21nm(C2v7) space group with Z = 2 assuming that the crystal structure is built up of the (B4O7)2− framework and Pb2+ ions. It has been shown that vibrations of borate and Pb2+ units are observed above 240 and below 160 cm−1, respectively. The results obtained for the spontaneous Raman scattering have also been used in the discussion of the stimulated Raman spectra of the material studied—a new Raman‐laser crystal. The obtained results revealed that mainly translational motions of Pb2+ ions participate efficiently in the SRS effect. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
A theoretical method for studying the inter-relation between electron and molecule structure is proposed on the basis of the complete energy matrices of the electron-electron repulsion, the ligand-field and the spin-orbit coupling for d5 configuration ion in a trigonal ligand-field. As an application, the local distortion structure of (FeCl6)3- coordination complex for Fe3+ ions doped into CdCl2 is investigated. Both the second-order zero-field splitting parameter and fourth-order zero-field splitting parameter are considered simultaneously in the structural investigation. By diagonalizing the complete energy matrices, the local structure distortion parameters ΔR=−0.24 Å, Δθ=2.137° at 26 K and ΔR=−0.203 Å, Δθ=2.515° at 225 K for Fe3+ ions in CdCl2 are determined. These results elucidate a microscopic origin of various ligand-field parameters which are usually used empirically for the interpretation of electron paramagnetic resonance results. It is found that the theoretical results are in good agreement with the experimental values.  相似文献   

13.
Comparative studies of the emission of quasi-thermal atomic and cluster ions from V, Nb, Ta, Au, and In targets bombarded by cluster ions Au m (m = 1–9), as well as from Si and Bi targets bombarded by cluster ions Au m (m = 1–9) and Bi m (m = 1–5), with energy E 0 ranging from 6 to 21 keV are carried out. In the case of bombardment by heavy cluster ions, the fraction of the quasi-thermal component in the energy spectra of sputtered atomic ions reaches 50 (for V, In, and Au), 70 (Nb), or more than 90% (Ta). In addition, quasi-thermal ions play a considerable part in the emission of small cluster ions Au2+, In2+, In3+, and Bi n +(n = 2–7). The results of the generalizing investigation favor the presence of thermal spike conditions at cluster bombardment and their appreciable contribution to the emission of atomic and small cluster ions.  相似文献   

14.
The K absorption-edge spectra of the ligand chlorine ion in square-planar complex compounds cis- and trans-[Pt(NH3)2Cl2], trans-[Pd(NH3)2Cl2], and (NH4)2PdCl4 are reported and discussed in connection with the chlorine K absorption spectra of K2PtCl4 and K2PdCl4, reported previously. The observed chemical shift of a white line at the absorption threshold is interpreted in terms of the difference of the ligand-field splitting of electronic states for metal ions. The white line is attributed to the electronic transition from the Cl? ls level to the lowest unoccupied antibonding molecular orbital (MO), which is specified by a MOb1g1) in the square-planar complex with D4h symmetry. The other absorption structures are regarded as continuum “shape resonances” of the outgoing electron trapped by the cage of the surrounding atoms. The effect of geometrical isomerism is found in the chlorine K absorption spectra of cis- and trans-[Pt(NH3)2Cl2].  相似文献   

15.
EPR and optical absorption of Pd centres in as grown NaCl single crystal arc reported. The EPR spectra show that palladium forms the Pd? centre with dx2-y2 wave function in the ground state. This centre formation and the accompanying distortion give rise to a superhyperfine interaction of the Pd? ion with the nuclei of the four Cl? ligands in the plane perpendicular to the C4 symmetry axis. The results of the fitting of axial spin Hamiltonian parameters to the experimentally observed spectra give the following values at 12K: g∥ =2.85, g ⊥ ? 2.15, A ∥29.8 × 10?4cm?1, A ⊥ = 5.9 7imes; 10?4cm?1. When the temperature increases, lines are getting broader, their amplitude decreases and a single line with g-value of g= 2.38 at g = 1/3(g∥ ?2g⊥) appears, which demonstrates the known Jahn-Teller behaviour of d9 ions EPR spectra.  相似文献   

16.
A series of lanthanide compounds of type Ln(NCS)(HMPA)4,(μ-SCN)2HgCl(SCN) (Ln = Pr, Nd, Eu) were synthesized and grown in the form of single crystals.

The crystal structure of the neodymium complex was determined by X-ray diffraction. Its space group is Cc, with the following unit cell parameters; a = 17.338(3) Å, b = 15.795(3) Å, c = 21.828(4) Å, β = 107.65(3)°. The structure has an unexpected architecture in which one Cl? ion, four SCN? ions, and four oxygen atoms of HMPA groups are engaged in the metal ion coordination.

The binuclear complex is composed of two types of subunits; seven coordinated Nd (III) and four coordinated Hg (II). The results obtained were compared with the earlier published data on the crystal structures of polynuclear complexes with ions of the IIa group (Zn or Cd). Luminescence, excitation of luminescence and absorption spectra of lanthanide (Pr, Nd, Eu) single crystals, as well as vibrational IR and Raman spectra at 293, 77 and 4K, were recorded. Non-trivial results of reabsorption of the d-level of Pr(III) emission by 3H43 PJ, 1D2 transitions were observed with simultaneous detection of emission from the 3P0 level after excitation in the UV region. The experimental oscillator strengths of the transitions were determined from the absorption spectra and parametrized in terms of the Judd-Ofelt intensity parameters Ωλ (λ = 2, 4, 6).

Satisfactory results for the calculation with low errors of estimation of the parameters were obtained for a crystal of the Nd-Hg compound, which reproduced the intensities of the electronic transitions well. Positive values of Ωλ were evaluated for Pr(III) after including the 3H43F2 hypersensitive transition (obeying selection rules δJ = 2, δL = 2) in the calculations.

Based on the above results, the radiative rate constant can be determined. Strong vibronic components were found in the low temperature spectra for both types of ligands involved in metal ion coordination. The vibronic transitions are mainly associated with modes of groups directly coordinated to the metal ions. Electron-phonon coupling including the resonant vibronic effect was analysed based on IR and Raman data.

Magnetic susceptibility measurements were carried out down to 1.7 K. Correlation of the spectra and magnetic properties with details of the structure of the title compound was studied.  相似文献   

17.
Ethyl 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carboxylate [C11H15NO2S] was synthesized by the Gewald method. Its single crystals were grown from an alcohol/ethyl acetate solution at 15 °C and characterized using IR and 1H‐NMR. These single crystals were irradiated for 72 h at 298 K by a 60Co gamma source with a dose speed of 0.864 kGy/h. After irradiation, electron spin resonance (ESR) measurements were carried out to study radiation‐induced radicals in the temperature range from 120 to 450 K. Additionally, for the single crystal, ESR angular dependencies were measured in the xy, xz and yz planes of the substance. This irradiated single crystal was analyzed based on the ESR spectra. Analysis of the spectra revealed that the radical was formed by a C–H bond fission at the carbon end of the substance. It was also observed that the color of the sample changed after irradiation. The hyperfine and g parameters were determined from the experimental spectra. It was inferred from these results that the hyperfine parameters and g value exhibited anisotropic behavior. The average values of these parameters were calculated as follows: g = 2.0088, AH1=H2 = 20.70 G, AH3=H4 = 10.80 G, AHa = 4.59 G, AHb = 3.24 G and, AN = 6.10 G. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The spin-spin interactions in a system that contains three different spin carriers, [{LCu}Gd(H2O)3×{Fe(CN)6}] n ·4nH2O (1) [L2−, N,N-propylenedi(3-methoxysalicylideneiminato)], were investigated by electron paramagnetic resonance spectroscopy. Additional information was obtained by analyzing the discrete heterobinuclear system [LCu(OH2)Gd(O2NO)3] (2), which contains the Cu(II)-Gd(III) pair also existing in the structure of 1, and the compounds [{LCu}Gd(H2O)3{Co(CN)6}] n ·3.5nH2O and [{LCu}La(H2O)3×{Fe(CN)6}] n ·4nH2O, which are isostructural with 1 and in which the paramagnetic low-spin Fe(III) and Gd(III) ions were replaced by diamagnetic low-spin Co(III) and La(III), respectively. The investigations were carried out in the temperature range of 293–4 K in both X- and Q-bands and also using a dual-mode X-band. The experimental spectra of the Cu(II)-Gd(III) pairs in 2 were interpreted as the sum of spectra of the ground spin state with total S = 4 and the excited state with S = 3 appearing due to the ferromagnetic exchange interaction between Cu(II) and Gd(III) ions. By fitting the experimental and simulated spectra, the zero-field splitting parameters of the Gd(III) ion are estimated and it is shown that no influence of the anisotropic interaction is detected. The magnetic properties of 1 are discussed from the perspective of the interaction of the Cu(II)-Gd(III) binuclear fragments with the Fe(III) ions.  相似文献   

19.
Greatly enhanced and abnormal Raman spectra were discovered in the nominal (Ba1 − xErx)Ti1 − x/4O3 (x = 0.01) (BET) ceramic for the first time and investigated in relation to the site occupations of Er3+ ions. BaTiO3 doped with Ti‐site Er3+ mainly exhibited the common Raman phonon modes of the tetragonal BaTiO3. Er3+ ions substituted for Ba sites are responsible for the abnormal Raman spectra, but the formation of defect complexes will decrease spectral intensity. A large increase in intensity showed a hundredfold selectivity for Ba‐site Er3+ ions over Ti‐site Er3+ ions. A strong EPR signal at g = 1.974 associated with ionized Ba vacancy defects appeared in BET, and the defect chemistry study indicated that the real formula of BET is expressed by (Ba1 − xEr3x/4)(Ti1 − x/4Erx/4)O3. These abnormal Raman signals were verified to originate from a fluorescent effect corresponding to 4S3/24I15/2 transition of Ba‐site Er3+ ions. The fluorescent signals were so intense that they overwhelmed the traditional Raman spectra of BaTiO3. The significance is that the abnormal Raman spectra may act as a probe for the Ba‐site Er3+ occupation in BaTiO3 co‐doped with Er3+ and other dopants. A new broad EPR signal at g = 2.23 was discovered, which originated from Er3+ Kramers ions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper the spectra of Gd3+ ions studied by electron spin resonance (ESR) in four types of tungstate crystals KY(WO4)2, CdWO4, CsLa(WO4)2 and La2(WO4)3 are discussed. The tungstate crystals were grown by the low-temperature gradient Czochralski technique with Gd2O3 addition in melt. The estimation of spin Hamiltonian (SH) parameters was realized using an original simulation program developed. The parameters of crystalline field in oxide crystals are comparable with Zeeman interaction so the solution of the Schr?dinger equation was realized numerically. We have estimated 36 SH parameters from ESR angular diagrams of Gd3+, including g x , g y , g z , g i (where i = 1, …, 6), B m n , C m n (where m = 2, …, 6, n = 0 (or 1 for C m n ), …, m), and the Euler angles. The positions of Gd3+ ions in the crystal structures, the charge compensation and the influence of lattice parameters on the SH parameters B 2 0 and B 2 2 are discussed in this paper as well. Authors' address: Nikolay V. Cherney, Institute of Inorganic Chemistry, Russian Academy of Sciences, Lavrentyev av. 3, Novosibirsk 630090, Russian Federation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号