首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
ABSTRACT

Explicit analytical expressions are presented for the density derivative, ?gHS(R; ρ)/?ρ, of the Percus–Yevick approximation to the hard-sphere radial distribution function for R ≤ 6σ, where σ is the hard-sphere diameter and ρ = (N/V3 is the reduced density, where N is the number of particles and V is the volume. A FORTRAN program is provided for the implementation of these for R ≤ 6σ, which includes code for the calculation of gHS(R; ρ) itself over this range. We also present and incorporate within the program code convenient analytical expressions for the numerical extrapolation of both quantities past R = 6σ. Our expressions are numerically tested against exact results.  相似文献   

2.
ABSTRACT

Cavity correlation functions, pair correlation functions, and bridge functions for the Lennard-Jones fluid are calculated from first Percus–Yevick (PY) theory and second-order Percus– Yevick (PY2) theory, molecular dynamics, and grand canonical Monte Carlo techniques. We find that the PY2 theory is significantly more accurate than the PY theory, especially at high density and near the critical point. The pair correlation function near the critical point has the expected slowly decaying long-range behaviour. However, we do not observe any long-range behaviour in the bridge function for the state points near the critical point we have simulated. However, we do note that the bridge function, which is usually negative near r = 0, becomes positive as r → 0. This behaviour is seen for the bridge functions computed from both PY2 and molecular dynamics, but not from PY.  相似文献   

3.
The phase behaviour of the primitive model of electrolytes is studied in the framework of the various mean-field approximations obtained recently by means of methods pertaining to statistical field theory (J.-M. Caillol, J. statist. Phys., 115, 1461 (2004); extended version: arXiv:cond-mat/0305465). The role of the regularization of the Coulomb potential at short distances is discussed in detail and the link to more traditional approximations of the theory of liquids is discussed. The values computed for the critical temperatures, chemical potentials, and densities are compared with available Monte Carlo data and other theoretical predictions.  相似文献   

4.
Extensive simulations of a hard sphere fluid confined between two planar hard walls show the onset of crystalline layers at the walls at about 98.3% of bulk crystallization density rho(f) independent of the wall separations L(z), and is, hence, a single wall phenomenon. As the bulk density far from the wall rho(b) increases, the thickness of the crystalline film appears to increase logarithmically, with (rho(f)-rho(b)) indicating complete wetting by the hard sphere crystal of the wall-fluid interface. Increasing rho(b) further, we observe a jump in the adsorption which depends on L(z) and corresponds to capillary freezing. The formation of crystalline layers below bulk crystallization, the logarithmic growth of the crystalline film, its independence of L(z), and its clear distinction from capillary freezing lend strong evidence for complete wetting by the hard sphere crystal at the wall-fluid interface.  相似文献   

5.
The empirical law uncovered by Menzerath and formulated by Altmann, known as the Menzerath–Altmann law (henceforth the MA law), reveals the statistical distribution behavior of human language in various organizational levels. Building on previous studies relating organizational regularities in a language, we propose that the distribution of distinct (or different) words in a large text can effectively be described by the MA law. The validity of the proposition is demonstrated by examining two text corpora written in different languages not belonging to the same language family (English and Turkish). The results show not only that distinct word distribution behavior can accurately be predicted by the MA law, but that this result appears to be language-independent. This result is important not only for quantitative linguistic studies, but also may have significance for other naturally occurring organizations that display analogous organizational behavior. We also deliberately demonstrate that the MA law is a special case of the probability function of the generalized gamma distribution.  相似文献   

6.
S M Moniri  H Yavari  E Darsheshdar 《中国物理 B》2016,25(12):126701-126701
By using a mean-field approximation which describes the coupled oscillations of condensate and noncondensate atoms in the collisionless regime, Landau damping in a dilute dipolar Bose–Fermi mixture in the BEC limit where Fermi superfluid is treated as tightly bounded molecules, is investigated. In the case of a uniform quasi-two-dimensional(2D)case, the results for the Landau damping due to the Bose–Fermi interaction are obtained at low and high temperatures. It is shown that at low temperatures, the Landau damping rate is exponentially suppressed. By increasing the strength of dipolar interaction, and the energy of boson quasiparticles, Landau damping is suppressed over a broader temperature range.  相似文献   

7.
The fluid-fluid binodal of asymmetric hard sphere mixtures obtained from approximate expressions of the virial pressure is investigated. Also the behaviour of the Gibbs free energy following from particular combinations of standard expressions of the contact values of the pair distributions functions is examined. A recently proposed parametrization of the latter in the colloidal limit is then discussed and compared with existing simulation data for the binodal of the effective fluid.  相似文献   

8.
The well-known C–V technique for determining the doping profile in a semiconductor is re-examined. Based on an analysis of the Poisson equation, a modification of the conventional procedure for evaluating the space-charge density distribution within the depletion layer of a semiconductor is presented. This procedure involves a developed integral-capacitance technique, which proves to be generally valid and gives the correct basis for determining the space-charge density near the edge of the depletion layer rather than the real doping profile. The relationship between the proposed method and the conventional differential-capacitance technique is revealed and a comparison of the effectiveness of both of them is also made. The method proves to be useful if shallow diffusion profiles within low-doped substrates are analyzed, when the conventional C–V profiling technique is not applicable. Experimental results obtained with an n+/n epitaxial layer are given and discussed as an illustration of the represented study. Received: 18 September 2000 / Accepted: 4 December 2000 / Published online: 3 May 2001  相似文献   

9.
Parsons–Lee approach is formulated for the isotropic–nematic transition in a binary mixture of oblate hard spherocylinders and hard spheres. Results for the phase coexistence and for the equation of state in both phases for fluids with different relative size and composition ranges are presented. The predicted behaviour is in agreement with Monte Carlo simulations in a qualitative fashion. The study serves to provide a rational view of how to control key aspects of the behaviour of these binary nematogenic colloidal systems. This behaviour can be tuned with an appropriate choice of the relative size and molar fractions of the depleting particles. In general, the mixture of discotic and spherical particles is stable against demixing up to very high packing fractions. We explore in detail the narrow geometrical range where demixing is predicted to be possible in the isotropic phase. The influence of molecular crowding effects on the stability of the mixture when spherical molecules are added to a system of discotic colloids is also studied.  相似文献   

10.
Molecular dynamics simulations of water, liquid beryllium fluoride and silica melt are used to study the accuracy with which the entropy of ionic and molecular liquids can be estimated from atom–atom radial distribution function data. The pair correlation entropy is demonstrated to be sufficiently accurate that the density–temperature regime of anomalous behaviour as well as the strength of the entropy anomaly can be predicted reliably for both ionic melts as well as different rigid-body pair potentials for water. Errors in the total thermodynamic entropy for ionic melts due to the pair correlation approximation are of the order of 10% or less for most state points, but can be significantly larger in the anomalous regime at very low temperatures. In the case of water, the rigid-body constraints result in larger errors in the pair correlation approximation, between 20 and 30%, for most state points. Comparison of the excess entropy, S e, of ionic melts with the pair correlation entropy, S 2, shows that the temperature dependence of S e is well described by T ?2/5 scaling across both the normal and anomalous regimes, unlike in the case of S 2. The residual multiparticle entropy, ΔS = S e ? S 2, shows a strong negative correlation with tetrahedral order in the anomalous regime.  相似文献   

11.
Characteristic temperatures and concentrations of a vapor–gas mixture in a wake of water droplets moving through combustion products (initial temperature 1170 K) were determined using the Ansys Fluent mathematical modeling package. We investigated two variants of motion: motion of two droplets (with sizes from 1 mm to 3 mm), consecutive and parallel, and motion of five staggered droplets. The influence of the relative position of droplets and also of distances between them (varied from 0.01 mm to 5 mm) on temperatures and concentrations of water vapor was established. The distances determine the relation between the evaporation areas and the total volume occupied by a droplet aggregate in the gas medium. The results of modeling for conditions that take into account vaporization on the droplet surface at average constant values of evaporation rate and also with consideration of the change in the latter, depending on the droplet temperature field, are compared. We determined conditions under which the modeling results are comparable for the assumption of a constant vaporization rate and with regard to the dependence of the latter on temperature. The earlier hypothesis on formation of a buffer vapor layer (“thermal protection”) around a droplet, which decreases the thermal flow from the external gas medium, was validated.  相似文献   

12.
A kind of addition formulae for the spherical wave functions is generated by using the bicentric expansion of Green function in spherical coordinates. For an acoustical system with multiple spheres, the addition formulae permit the field expansions all referred to the center of one of the spheres, whose boundary conditions can be consequently used to study the multiple scattering easily. The two-sphere acoustical system with different boundary conditions is considered and the field scattered by each sphere can be obtained by solving an infinite set of two linear, complex, algebraic equations, whose coefficients are coupled through double sums in the spherical wave functions. Finally, the form functions of two spheres insonified by a plane wave at arbitrary angles of incidence are calculated and the addition formulae presented are validated by comparing the corresponding numerical results with those of the existing literature.  相似文献   

13.
14.
This work presents an empirical study of the evolution of the personal income distribution in Brazil. Yearly samples available from 1978 to 2005 were studied and evidence was found that the complementary cumulative distribution of personal income for 99% of the economically less favorable population is well represented by a Gompertz curve of the form G(x) = exp [exp (A-Bx)], where x is the normalized individual income. The complementary cumulative distribution of the remaining 1% richest part of the population is well represented by a Pareto power law distribution P(x) = βx. This result means that similarly to other countries, Brazil’s income distribution is characterized by a well defined two class system. The parameters A, B, α, β were determined by a mixture of boundary conditions, normalization and fitting methods for every year in the time span of this study. Since the Gompertz curve is characteristic of growth models, its presence here suggests that these patterns in income distribution could be a consequence of the growth dynamics of the underlying economic system. In addition, we found out that the percentage share of both the Gompertzian and Paretian components relative to the total income shows an approximate cycling pattern with periods of about 4 years and whose maximum and minimum peaks in each component alternate at about every 2 years. This finding suggests that the growth dynamics of Brazil’s economic system might possibly follow a Goodwin-type class model dynamics based on the application of the Lotka-Volterra equation to economic growth and cycle.  相似文献   

15.
A detailed study is presented of the calculation of the surface tension and the surface energy of Lennard–Jones fluids from the radial distribution function and the density profile. To do so, a modification is made to Lekner and Henderson's statistical mechanics approach by introducing two simple analytical expressions for the radial distribution function of the interface zone. In these expressions the radial distribution functions of the liquid and vapour phases are weighted via step or exponential variations. The well- known exponential model for the density profile in the interface zone is considered. Finally, results are compared with values from experiment, from computer simulation and from relevant theoretical developments. It is shown that the use of the proposed radial distribution function in the interface zone represents a significant improvement in applying Lekner and Henderson's approach.  相似文献   

16.
WG Rothschild 《Molecular physics》2013,111(19):3129-3136
Molecular dynamics simulations have been performed for a range of equi-site and site–site radial distribution functions for the five-atom halomethane species dichloro-, trichloro-, and tetrachloromethane dissolved in the low-molecular weight hydrocarbons liquefied methane and cyclopropane, with the general aim of using this approach to predict good or bad solvent characteristics. It was found that methane solutions of dichloro- and trichloromethane showed an enhancement of near-neighbour occupancy, the methane solvent seemingly exhibiting a phobic, structure-promoting solvation behaviour towards the two solutes by increasing the number of nearest neighbours above the values that would result from a pure dilution effect caused by the solvent. It was verified that there were no significant regions of solid-like conformations nor remnants of imperfect average homogeneity within the system at the necessarily low temperature (183?K). On the other hand, simulated site–site radial functions with solvents tetrachloromethane and cyclopropane indicate normal solution characteristics towards solutes dichloro- and trichloromethane. The cause of the phobic solvation behaviour of solvent liquid methane towards di- and trichloromethane is not obvious, except that it seemingly involves the presence of hydrogen atoms on the solute species because the site–site centre-of-mass radial distribution functions of tetrachloromethane in liquid methane implied normal solution behaviour.  相似文献   

17.
We study the quantum speed limit (QSL) time of a two-qubit system coupled to a spin–chain model with the Dzyaloshinsky–Moriya (DM) interaction. For the Bell state coupled to the Ising model or anisotropic XY model, we find that there is a prominent corresponding relationship between the QSL time and quantum phase transition in a spin–chain environment with larger scale, and the DM interaction can strongly enhance or suppress the response relation. Remarkably, when the surrounding environment is set to the XX model, the DM interaction makes it possible for us to witness the quantum phase transition by the local anomalous enhancement of the QSL time near the critical point. In addition, our analyses indicate that the entanglement can speed-up the system evolution in many-body environment.  相似文献   

18.
19.
20.
Continuum reduction and Monte Carlo simulation are used to calculate the heavy quark potential and the string tension in large N Yang–Mills theory in four dimensions. The potential is calculated out to a separation of nine lattice units on a lattice with extent six in each direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号