首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The infrared spectra of HOD molecules in liquid water are calculated at constant density over the temperature range of 10 to 400°C from the statistical distributions of the vibration frequencies of water OH-groups determined previously from the experimental Raman spectra. Their shape and position are extrapolated over a wider temperature range. The dependence of contour shape and integrated intensity of the IR band on the frequency of its maximum, the first moment of a statistical contour and temperature are described numerically and analytically. Calculations are in qualitative agreement with all available experimental material and fitted quantitatively at a density of water of ~1?g?cm?3. The success of the proposed model applied to infrared spectra supports once more the continuum treatment of liquid water structure.  相似文献   

2.
张英逊  吴锡真  李祝霞 《中国物理 C》2002,26(10):1065-1071
应用量子分子动力学模型,从原子核发生碎化时的碎块质量分布、密度涨落以及混沌动力学中描述混沌程度的最大Lyapunov指数等3个方面,对原子核的液气相变及其在临界点附近的行为进行较为全面的探讨.通过研究,发现在临界温度附近原子核发生最大的液气共存、密度涨落达到极大以及产生最大混沌构型.  相似文献   

3.
Mario Kurtjak 《Molecular physics》2014,112(8):1132-1148
Water confined by the presence of a ‘sea’ of inert obstacles was examined. In the article, freely mobile two-dimensional Mercedes-Benz (MB) water put to a disordered, but fixed, matrix of Lennard-Jones disks was studied by the Monte Carlo computer simulations. For the MB water molecules in the matrix of Lennard-Jones disks, we explored the structures, hydrogen-bond-network formation and thermodynamics as a function of temperature and size and density of matrix particles. We found that the structure of model water is perturbed by the presence of the obstacles. Density of confined water, which was in equilibrium with the bulk water, was smaller than the density of the bulk water and the temperature dependence of the density of absorbed water did not show the density anomaly in the studied temperature range. The behaviour observed as a consequence of confinement is similar to that of increasing temperature, which can for a matrix lead to a process similar to capillary evaporation. At the same occupancy of space, smaller matrix molecules cause higher destruction effect on the absorbed water molecules than the bigger ones. We have also tested the hypothesis that at low matrix densities the obstacles induce an increased ordering and ‘hydrogen bonding’ of the MB model molecules, relative to pure fluid, while at high densities the obstacles reduce MB water structuring, as they prevent the fluid to form good ‘hydrogen-bonding’ networks. However, for the size of matrix molecules similar to that of water, we did not observe this effect.  相似文献   

4.
Using neutron diffraction, we have tracked the temperature dependence of structural properties for heavy water confined in the nanoporous silica matrix MCM-41-S. By observing the correlation peak corresponding to the pore-pore distance, which is determined by the scattering contrast between the silica and the water, we monitored the density of the confined water. Concurrently, we studied the prominent first diffraction peak of D(2)O at ≈ 1.8 ?(-1), which furnishes information on the microscopic arrangement of the water molecules. The data show the presence of a density maximum at ≈ 275 K (± 10 K), a property similar to bulk water, and the occurrence of a density minimum at ≈ 180 K (± 10 K). The prominent diffraction peak of D(2)O is found to shift and sharpen over a wide T range from 200 to 270 K, reflecting structural changes that are strongly correlated with the changes in density. We also observe the continuous formation of external ice, arising from water expelled from the pores while expansion takes place within the pores. An efficient method for monitoring the density of the confined D(2)O using a triple-axis spectrometer is demonstrated.  相似文献   

5.
An electrostatic model describing the dependence of the thermal ionization energy of impurities on their concentration, compensation factor, and temperature is developed. The model takes into account the screening of impurity ions by holes (electrons) hopping from impurity to impurity, the change in the impurity-band width, and its displacement with respect to the edge of the valence band for acceptors (conduction band for donors). The displacement of the impurity band is due to the functional dependence of the hole (electron) affinity of the ionized acceptor (donor) on the screening of the Coulomb field of the ions. The spatial distribution of the impurity ions over the crystal was assumed to be Poisson-like, and the energy distribution was assumed to be normal (Gaussian). For the relatively low doping levels under investigation, the behavior of the density of states at the edges of the valence and conduction bands was assumed to be the same as for the undoped crystal. The results of the numerical study are in agreement with the decrease in the ionization energy that is experimentally observed for moderately compensated Ge: Ga as the temperature and the doping level are decreased. It is predicted that the temperature dependence of the thermal ionization energy has a small anomalous maximum at small compensation factors.  相似文献   

6.
Ambient noise spectra in a shallow brackish water environment were found to be steeper than expected at frequencies above 10 kHz. The high-frequency behavior of the spectra was resolved by modeling dispersion and noise in bubbly water. Bubble size distributions fitted to the brackish water spectra exhibit a distinctive maximum in the radius range 0.1-0.3 mm, and a substantial drop in bubble density below a radius of 0.1 mm. The brackish water distributions were tied to an oceanic spectrum with a spectral slope of 5.7 dB/octave obtained with a -3 / 2 power law dependence of bubble size density on radius.  相似文献   

7.
测量了 Bi2 Sr2 Ca Cu2 O8+δ单晶不同温度下的磁化曲线。根据 Bean临界态模型得到了不同温度下的钉扎力密度 FP 对磁场的依赖关系 ,发现在不同温度下的钉扎力密度可以标度在同一条曲线上。标度函数和最大钉扎力所对应的磁场与不可逆场 Hirr的比值都表明 Si2 Sr2 Ca Cu2 O8+δ单晶在磁通玻璃态的钉扎机制主要是正常相面钉扎。  相似文献   

8.
左方圆  王阳  吴谊群  赖天树 《物理学报》2009,58(10):7250-7254
利用飞秒时间分辨抽运-探测反射光谱技术研究了室温下Ge2Sb2Te5非晶薄膜中载流子超快动力学及其激发能量密度依赖性.发现光激发后05 ps时间内,反射变化率降到最小值,然后开始迅速增加,在几个皮秒时间内达到大于初始反射率的新的最大值.反射率的减小量、增加量和增加速率均随激发能量密度的增大而增加.利用高密度等离子体的Auger复合及其感应的晶格加热模型较好地定量解释了反射率由最小到最大的快速变化过程,表明高密度等离子体的Auger复合加热 关键词: 抽运-探测光谱 2Sb2Te5非晶薄膜')" href="#">Ge2Sb2Te5非晶薄膜 Auger复合 载流子动力学  相似文献   

9.
The quantitative performance of a "single half-wavelength" acoustic resonator operated at frequencies around 3 MHz as a continuous flow microparticle filter has been investigated. Standing wave acoustic radiation pressure on suspended particles (5-microm latex) drives them towards the center of the half-wavelength separation channel. Clarified suspending phase from the region closest to the filter wall is drawn away through a downstream outlet. The filtration efficiency of the device was established from continuous turbidity measurements at the filter outlet. The frequency dependence of the acoustic energy density in the aqueous particle suspension layer of the filter system was obtained by application of the transfer matrix model [H. Nowotny and E. Benes, J. Acoust. Soc. Am. 82, 513-521 (1987)]. Both the measured clearances and the calculated energy density distributions showed a maximum at the fundamental of the piezoceramic transducer and a second, significantly larger, maximum at another system's resonance not coinciding with any of the transducer or empty chamber resonances. The calculated frequency of this principal energy density maximum was in excellent agreement with the optimal clearance frequency for the four tested channel widths. The high-resolution measurements of filter performance provide, for the first time, direct verification of the matrix model predictions of the frequency dependence of acoustic energy density in the water layer.  相似文献   

10.
We study the time evolution and mass dependence of various quantities (such as average and maximum central density, collision dynamics, participant spectator matter, and average and maximum temperature) at the geometry of vanishing flow (GVF) throughout the mass range between 80 and 262 units. We find that the reaction time at 100 MeV/nucleon of the geometry of vanishing flow is smaller for lighter nuclei compared to heavier ones. All the quantities can be parameterized by a power law dependence. The maximal values of corresponding quantities are also shifted accordingly.  相似文献   

11.
Our recent works on supercritical water are reviewed. In order to elucidate the hydrogen bonding state of supercritical water, the proton chemical shift of the water proton is measured at temperatures up to 400 °C and densities of 0.19, 0.29, 0.41, 0.49, and 0.60 g/cm3. The magnetic susceptibility correction is made in order to express the chemical shift relative to an isolated water molecule in dilute gas. The chemical shift is then related to the average number of hydrogen bonds in which a water molecule is involved. It is found that the hydrogen bonding persists at supercritical temperatures and that the average number of hydrogen bonds is at least one for a water molecule at the densities larger than the critical. The density dependence of the chemical shift at supercritical temperatures is analyzed on the basis of statistical thermodynamics. It is shown that the hydrogen bonding is spatially more inhomogeneous at lower densities. The dipole moment of water at supercritical states is also estimated from the number of hydrogen bonds. The dynamical counterpart of our structural study of supercritical water has been performed by NMR relaxation measurements. Using D2O, we measured the spin-lattice relaxation time and determined the reorientational relaxation time as a function of the water density and temperature. It is then found that while the reorientational relaxation time decreases rapidly with the temperature in the subcritical condition, it is a weak function of the density in the supercritical conditions.  相似文献   

12.
A model of ultrasonic backscattering for cancellous bone saturated by water is proposed. This model assumes that scattering is caused by the solid trabeculae and describes the cancellous bone as a weak scattering medium. The backscatter coefficient is related to the spatial Fourier transform of bone microarchitecture and to the density and compressibility fluctuations between the solid trabeculae and the saturating fluid. The computations of the model make use of three-dimensional numerical images of bone microarchitecture, obtained by tomographic reconstructions with a 10 microm spatial resolution. With this model, the predictions of the frequency dependence and of the magnitude of the backscatter coefficient are reasonably accurate. The theoretical predictions are compared to experimental data obtained on 19 specimens. An accuracy error of approximately 1 dB was found (difference between the averaged experimental values and theoretical predictions). One limit of the model may come from inaccurate values of trabecular bone characteristics needed for the computations (density and longitudinal velocity), which are yet to be precisely determined for human trabecular bone. However, the model is only slightly sensitive to variations of bone material properties. It was found that an accuracy error of 2.2 dB at maximum resulted from inaccurate a priori values of bone material properties. A computation of the elastic mean free path in the medium suggests that multiple scattering plays a minor role in the working frequency bandwidth (0.4-1.2 MHz). It follows from these results that a weak scattering medium model may be appropriate to describe scattering from trabecular bone.  相似文献   

13.
A nonmonotonic temperature dependence of the resistance with a maximum in the temperature range of 2–4 K whose position depends on the hole density has been observed in hole channels of silicon field-effect transistors. The spin-orbit hole relaxation time and the temperature dependences of the phase relaxation time of the electron wave have been obtained from the measurements of the alternating sign anomalous magnetoresistance. The nonmonotonic temperature dependence of the resistance can be described by the formulas of weak-localization theory with these parameters. The maximum appears owing to a temperature-induced change in the relation between the measured times. As a result, the localization behavior of the conductivity at high temperatures is changed to the antilocalization behavior at low temperatures. The inclusion of quantum corrections to the conductivity caused by the electron-electron interaction improves quantitative agreement between the experiment and calculation. Thus, it has been demonstrated that, in contrast to the widely accepted concept, there is a region of the parameters where the electron-electron interaction does not change the antilocalization (metallic) type of the temperature dependence of the resistance.  相似文献   

14.
A systematic study of the hole transport and electrical properties in blue-emitting polymers as poly(9,9-dioctylfluorene) (PFO) has been performed. We show that the temperature dependent and thickness dependent current density versus voltage characteristics of PFO hole-only devices can be accurately described using our recently introduced improved mobility model based on both the Arrhenius temperature dependence and non-Arrhenius temperature dependence. Within the improved model, the mobility depends on three important physical quantities: temperature, carrier density, and electric field. For the polymer studied, we find the width of the density of states σ=0.115 eV and the lattice constant a=1.2 nm. Furthermore, we show that the boundary carrier density has an important effect on the current density versus voltage characteristics. Too large or too small values of the boundary carrier density lead to incorrect current density versus voltage characteristics. The numerically calculated carrier density is a decreasing function of distance from the interface. The numerically calculated electric field is an increasing function of distance. Both the maximum of carrier density and minimum of electric field appear near the interface.  相似文献   

15.
Hydrophobic force, interfacial tension, and transverse density profile in a confined water system are addressed from first principles of statistical mechanics in a lattice model for water. Using the molecular mean field theory technique we deduce explicit expressions for each of the above mentioned phenomena and show that hydrophobic force is a manifestation of a Casimir-like effect due to hydrogen-bond fluctuations in confined water. It is largely influenced by the long range correlations of orientational fluctuations. Furthermore, the temperature dependence of hydrophobic force between large non-polar surfaces is suggested to be different from that between small solutes. The mechanisms contributing to characteristic behavior in each case are identified. In the case of large surfaces, the prevalence of discrete fluctuation modes in the confinement direction and their entropic contribution to the overall free energy dominate the temperature dependence. Mode discretization is also implicated in the variation of interfacial tension with separation distance between confining surfaces and characteristic density profile of the confined fluid. All the computations are parameter free and compare favorably with results of molecular dynamics simulations and experiments.  相似文献   

16.
This article presents an overview of recent experiments performed on transport properties of water in the deeply supercooled region, a temperature region of fundamental importance in the science of water. We report data of nuclear magnetic resonance, quasi-elastic neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy, studying water confined in nanometer-scale environments. When contained within small pores, water does not crystallise, and can be supercooled well below its homogeneous nucleation temperature Th. On this basis it is possible to carry out a careful analysis of the well known thermodynamical anomalies of water. Studying the temperature and pressure dependencies of water dynamics, we show that the liquid-liquid phase transition (LLPT) hypothesis represents a reliable model for describing liquid water. In this model, water in the liquid state is a mixture of two different local structures, characterised by different densities, namely the low density liquid (LDL) and the high-density liquid (HDL). The LLPT line should terminate at a special transition point: a low-T liquid-liquid critical point. We discuss the following experimental findings on liquid water: (i) a crossover from non-Arrhenius behaviour at high T to Arrhenius behaviour at low T in transport parameters; (ii) a breakdown of the Stokes-Einstein relation; (iii) the existence of a Widom line, which is the locus of points corresponding to maximum correlation length in the p-T phase diagram and which ends in the liquid-liquid critical point; (iv) the direct observation of the LDL phase; (v) a minimum in the density at approximately 70 K below the temperature of the density maximum. In our opinion these results represent the experimental proofs of the validity of the LLPT hypothesis.  相似文献   

17.
We conduct a theoretical study of the temperature dependence of the spin polarization ( P) and the magnetoresistance (MR) ratio using the double exchange (DE) model for ferromagnetic tunnel junctions with half-metallic systems. It is shown that the strong exchange coupling in the DE model plays an important role in the temperature dependence of both P and the MR ratio; their values can be less than the maximum values expected for half-metallic systems at low temperatures, and the MR ratio decreases more rapidly than P with increasing temperature. The calculated results, however, indicate that the MR ratio may still be large at high temperatures near the Curie temperature.  相似文献   

18.
A methodology based upon wavelength modulation and two-line thermometry for assessment of gas temperature by tunable diode laser absorption spectroscopy utilizing a standard tunable distributed feedback (DFB) diode laser working in the telecom C-band has been developed. Due to the high density of water lines in this wavelength region at elevated temperatures the methodology does not make use of two individual lines, but rather two groups of lines. The two groups identified have been found to have favorable properties for accurate temperature assessment in the 200–1000°C range, primarily a separation that is within a single DFB laser scan (∼20 GHz), an adequate linestrength, and sufficient difference in temperature dependence; the ratio of the peak values of the 2f-wm-signals, R, was found to increase monotonically with temperature, T, with a relative sensitivity, (ΔR/R)/(ΔT/T), above or around unity for most of the pertinent temperature range. The standard deviation of a temperature measurement with a 1 s integration time was found to be below 0.3%. It is shown that the temperature assessment has virtually no dependence on water concentration but a weak dependence on modulation amplitude.  相似文献   

19.
Molecular dynamics simulations have become a standard tool for the investigation of biological and soft matter systems. Water models serve as the basis of force fields used in molecular dynamics simulations of these systems. This article reports on an examination of the utility of a set of coarse-grained (CG) water models, with different resolutions, interaction potentials (Lennard–Jones, Morse), and cut-off distances. The relationships between the parameters under specific choices of the above options and the thermodynamic properties, such as density, surface tension, and compressibility, were found to fit simple mathematical equations. The limits of applicability of these CG water models were explored by checking the melting temperature. If a CG site is mapped to one or two real water molecules, a simple model with appropriate combinations of cut-off distances, functional forms, and parameters can be found to simultaneously match the experimental values of density, surface tension, and compressibility under ambient conditions. If more water molecules are included in a CG site, either the melting temperature approaches or surpasses room temperature, or the surface tension and compressibility cannot both be matched simultaneously. In striving for computational efficiency, it is still possible to find a simple CG water model with three water molecules contained in a CG bead that generates a liquid state of water with realistic values of density, surface tension and compressibility at ambient condition, but coarser models are not recommended.  相似文献   

20.
Akira Isii 《Surface science》1984,147(1):277-294
We consider the micro-processes of positronium formation on surfaces with a new Hamiltonian, in which we treat the positron as a quantum particle. First we calculate the temperature dependence and the positronium work function dependence of the positronium formation probability in the case of no surface binding states. We succeeded in deriving a slightly increasing profile of the positronium fraction at low temperatures, as was found in the experiment of Lynn et al. We also calculated the probability of the positronium formation at excited levels and of the formation of the negative positronium ion. Furthermore, the positronium fraction is shown to be proportional to the length at which the surface electron density drops to half the maximum value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号