首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We establish a rigorous time-dependent density functional theory of classical fluids for a wide class of microscopic dynamics. We obtain a stationary action principle for the density. We further introduce an exact practical scheme, to obtain hydrodynamical effects in density evolution, that is analogous to the Kohn-Sham theory of quantum systems. Finally, we show how the current theory recovers existing phenomenological theories in an adiabatic limit.  相似文献   

2.
The asymptotic density profile of classical simple fluids in contact with a hard wall is studied using the hypernetted chain approximation for inhomogeneous systems. It is shown that the one-particle distribution function tends very slowly to the density of the bulk, also in absence of a long-range wall-particle interaction, when the pair interaction between particles in the bulk varies as an inverse power at large distances.  相似文献   

3.
曹达鹏  程礼盛  汪文川 《中国物理》2007,16(8):2296-2303
A density functional theory (DFT) is used to investigate molecular orientation of hard rod fluids in a hard slit. The DFT approach combines a modified fundamental measure theory (MFMT) for excluded-volume effect with the first order thermodynamics perturbation theory for chain connectivity. In the DFT approach, the intra-molecular bonding orientation function is introduced. We consider the effects of molecular length (i.e. aspect ratio of rod) and packing fraction on the orientations of hard rod fluids and flexible chains. For the flexible chains, the chain length has no significant effect while the packing fraction shows slight effect on the molecular orientation distribution. In contrast, for the hard rod fluids, the chain length determines the molecular orientation distribution, while the packing fraction has no significant effect on the molecular orientation distribution. By making a comparison between molecular orientations of the flexible chain and the hard rod fluid, we find that the molecular stiffness distinctly affects the molecular orientation. In addition, partitioning coefficient indicates that the longer rodlike molecule is more difficult to enter the confined phase, especially at low bulk packing fractions.  相似文献   

4.
周世琦 《中国物理》2007,16(4):1167-1175
A universal theoretical approach is proposed which enables all hard sphere density functional approximations (DFAs) applicable to van der Waals fluids. The resultant DFA obtained by combining the universal theoretical approach with any hard sphere DFAs only needs as input a second-order direct correlation function (DCF) of a coexistence bulk fluid, and is applicable in both supercritical and subcritical temperature regions. The associated effective hard sphere density can be specified by a hard wall sum rule. It is indicated that the value of the effective hard sphere density so determined can be universal, i.e. can be applied to any external potentials different from the single hard wall. As an illustrating example, the universal theoretical approach is combined with a hard sphere bridge DFA to predict the density profile of a hard core attractive Yukawa model fluid influenced by diverse external fields; agreement between the present formalism's predictions and the corresponding simulation data is good or at least comparable to several previous DFT approaches. The primary advantage of the present theoretical approach combined with other hard sphere DFAs is discussed.  相似文献   

5.
ABSTRACT

A new density functional for the study of associating inhomogeneous fluids based on Wertheim's first-order thermodynamic perturbation theory is presented and compared to the most currently used associating density functionals. This functional is developed using the weighted density approximation in the range of association of hard spheres. We implement this functional within the framework of classical density functional theory together with modified fundamental measure theory to account for volume exclusion of hard spheres. This approach is tested against molecular simulations from literature of pure associating hard spheres and mixtures of non-associationg and associating hard spheres with different number of bonding sites close to a hard uniform wall. Furthermore, we compare and review our results with the performance of associating functionals from literature, one based on fundamental measure theory and the inhomogeneous version of Wertheim's perturbation theory. Results obtained with classical DFT and the three functionals show excellent agreement with molecular simulations in systems with one hard wall. For the cases of small pores where only one or two layers of fluid are allowed discrepancies between results with classical DFT and molecular simulations were found.  相似文献   

6.
7.
Using the framework of Wertheim's thermodynamic perturbation theory, a new polyatomic density functional theory is developed to account for the intermolecular association of cyclic molecules in interfacial systems. To test the theory, Monte Carlo simulations in the canonical ensemble were performed for the specific case of an associating triatomic ring with one association site next to a hard wall. The theory and simulation results were found to be in good agreement.  相似文献   

8.
We adopt a field-theoretical approach to study the structure and thermodynamics of a spatially confined fluid interacting with the Yukawa potential. We derive analytic expressions for the pressure, the Helmholtz free energy, the correlation function, the density profile, and the adsorption. Different simple analytic expressions of the density profile are compared with the numerical estimation of the mean field results. Beyond the mean field approximation, we show that fluctuations can contribute significantly to the properties of the system. Notably they lead to a desorption phenomenon regardless of the sign of the interaction. As a consequence, a non-monotonous density profile at the wall and adsorption curves as a function of the density are found for some systems. This behaviour rationalizes the ionic depletion phenomenon responsible for the anomalous behaviour of the electric capacitance as a function of temperature. Particular attention is given to the contact theorem condition.  相似文献   

9.
M. Moradi 《Physica A》2007,384(2):187-198
We study a two-dimensional (2D) classical fluid mixture of hard convex shapes. The components of the mixture are two kinds of hard ellipses with different aspect ratios. Two different approaches are used to calculate the direct, pair and total correlation functions of this fluid and results are compared. We first use a formalism based on the weighted density functional theory (WDFT), introduced by Chamoux and Perera [Phys. Rev. E 58 (1998) 1933]. Second, in general the Percus-Yevick (PY) and the hypernetted chain (HNC) integral equations are solved numerically for the 2D fluid mixtures of hard noncircular particles. Explicit results are obtained for the fluid mixtures of hard ellipses and comparisons are made by the two approaches. Also, the results are compared with the recent Monte Carlo simulation for the one-component fluids of hard ellipses. Finally we obtained the equation of state of hard ellipses for the aspect ratio sufficiently close to 1 and compared our results with the simulations of the fluid mixtures of hard disks.  相似文献   

10.
Xueqian Chen  Wei Feng  Ying Hu 《Molecular physics》2016,114(16-17):2541-2547
ABSTRACT

In this paper, Lafuente and Cuesta's cluster density functional theory (CDFT) and lattice mean field approximation (LMFA) are formulated and compared within the framework of lattice density functional theory (LDFT). As a comparison, an LDFT based on our previous work on nonrandom correction to LMFA is also developed, where local density approximation is adopted on the correction. The numerical results of density distributions of an Ising fluid confined in a slit pore obtained from Monte Carlo simulation are used to check these functional approximations. Due to rational treatment on the coupling between site-excluding entropic effect and contact-attracting enthalpic effect by CDFT with Bethe-Peierls approximation (named as BPA-CDFT for short), the improvement of BPA-CDFT beyond LMFA is checked as expected. And it is interesting that our LDFT has a comparative accuracy with BPA-CDFT. Apparent differences between the profiles such as solvation force, excess adsorption quantity and interfacial tension from LMFA and non-LMFAs are found in our calculations. We also discuss some possible theoretical extensions of BPA-CDFT.  相似文献   

11.
张鹏  刘扬  于惠  韩圣浩  吕英波  吕茂水  丛伟艳 《中国物理 B》2014,23(2):26103-026103
In this paper, we report on a series of computational simulations on hydrogen bonding in two ice phases (Ih and Ic) using CASTEP with PW91 and RPBE exchange-correlation based on ab initio density functional theory. The strength of the H-bond is correlated with intramolecular O-H stretching, and the energy splitting exists for both the H-bond and covalent O-H stretching. By analyzing the dispersion relationship of to(q), we observe the separation of the longitudinal optic (LO) mode from transverse optic (TO) mode at the gamma point, seemingly interpreting the controversial two H-bond peaks in the vibrational spectrum of ice recorded by inelastic incoherent neutron scattering experiments. The test of ambient environment on phonon density of sates (PDOS) shows that the relaxed tetrahedral structure is the most stable structural configuration for water clusters.  相似文献   

12.
The accuracy of the self-consistent density functional theory, based on the idea of universality of the so-called 'bridge functional', is tested by comparison with the extensive simulations for the Lennard-Jones bulk fluid (Johnson et al. 1993, Molec. Phys., 78, 591). In this benchmark test very good agreement with the simulation results is obtained, and thermodynamic consistency is accurately obeyed between the 'Energy', 'Virial (Pressure)', and 'Compressibility' independent routes to the equation of state.  相似文献   

13.
The density functional theory analysis was used for a number XYL complexes (XY is a dihalogen molecule and L is a Lewis base), formed between molecules I2, ICl, IBr and pyridine. The calculated geometrical parameters, IR spectra and nuclear quadrupole interaction constants of iodine are consistent with the data of microwave spectroscopy and nuclear quadrupole resonance. The good correlation between the experimental and calculated binding energies of the inner electrons of iodine, chlorine and nitrogen atoms were found with the calculation using both Gaussian and Slater functions. The comparison of experimental and calculated changes in the electron density on the atoms upon complex formation suggested the choice of scheme for calculating the effective charge on the atoms, which allow us to interpret the experimental spectra. It is shown that the use of both calculated schemes allows us to predict the enthalpy of complex formation in close agreement with the experimental values. The energy analysis shows that in the complexes the electrostatic binding energy dominates that of covalent binding.  相似文献   

14.
15.
We investigate the local polarisability or polarisability density using both a conceptual density functional theory approach based on the linear response function and time-dependent density functional theory. Using a zero frequency in the latter, we can immediately compare both approaches. Using an analytical expression for the linear response kernel, we are able to systematically analyse α(r) throughout the periodic table. An extension to molecules is also made with a study of the CO molecule retrieving the connection between local softness and local polarisability.  相似文献   

16.
付东  廖涛 《中国物理》2007,16(11):3475-3482
The excess Helmholtz free energy functional for nonpolar chain-like molecules is formulated in terms of a weighted density approximation (WDA) for short-range interactions and a Weaks Chandler Andersen (WCA) approximation and a Barker Henderson (BH) theory for long-range attraction. Within the framework of density functional theory (DFT), vapour liquid interracial properties including density profile and surface tension, and vapour-liquid nucleation properties including density profile, work of formation and number of particles are investigated for spherical and chain- like molecules. The obtained vapour liquid surface tension and the number of particles in critical nucleus for Lennard- Jones (L J) fluids are consistent with the simulation results. The influences of supersaturation, temperature and chain length on vapour liquid nucleation properties are discussed.[第一段]  相似文献   

17.
黄耀清  郝成红  郑继明  任兆玉 《物理学报》2013,62(8):83601-083601
利用过渡金属掺杂的硅基团簇, 构建了一种自旋分子结; 并利用第一性原理方法, 对其电子自旋极化输运性质进行了研究. 计算表明, 通过过渡金属掺杂可以有效地产生自旋极化电流, 磁性金属Fe和非磁性金属Cr和Mn掺杂的体系呈现出较明显的自旋极化透射现象, 但分子结的自旋极化输运能力与团簇孤立状态下的磁矩无一致性.从Sc到Ni的掺杂, 体系的自旋极化透射能力先增大后迅速减小, 在Fe掺杂的Si12团簇中出现最大值. 关键词: 硅团簇 自旋极化输运 密度泛函理论 非平衡格林函数  相似文献   

18.
Using second-order Barker–Henderson perturbation theory we are able to derive an explicit expression for the direct correlation function of fluids with hard core potentials. Using the obtained direct correlation function, one can explicitly calculate all thermodynamic properties of simple fluids with hard core potentials. Comparisons with computer simulation data show good agreement for both thermodynamic properties and the static structure factor of the hard core double Yukawa potential.  相似文献   

19.
Ferromagnetism in GaN:Gd: a density functional theory study   总被引:1,自引:0,他引:1  
Liu L  Yu PY  Ma Z  Mao SS 《Physical review letters》2008,100(12):127203
First-principle calculations of the electronic structure and magnetic interaction of GaN:Gd have been performed within the generalized gradient approximation (GGA) of the density functional theory with the on-site Coulomb energy U taken into account (also referred to as GGA+U). The ferromagnetic p-d coupling is found to be over 2 orders of magnitude larger than the s-d exchange coupling. The experimental colossal magnetic moments and room-temperature ferromagnetism in GaN:Gd reported recently are explained by the interaction of Gd 4f spins via p-d coupling involving holes introduced by intrinsic defects such as Ga vacancies.  相似文献   

20.
The physisorption and pore condensation of a polar fluid (CHF3) in a series of MCM-41 type mesoporous silica materials with native and chemically modified pore walls has been studied over the temperature range 168–293 K, corresponding to reduced temperatures T/Tc in the range 0.56-0.98, where Tc is the critical temperature of the fluid. Chemical modification of the pore walls by attachment of Si(CH3)3 groups causes a shift in pore condensation to higher relative pressures p/p0. This effect is most pronounced for materials with narrow pores (2.9 nm) at low temperatures. In the theoretical part of the work density functional theory based on a simple cubic lattice model of the confined fluid has been used to analyse the combined effect of a reduced pore width and weaker fluid-wall interaction caused by the surface coating. For realistic values of the model parameters it is found that the effect of the lower pore width is outweighed by the opposing effect of the lower fluid-wall interactions. The weaker temperature dependence of the pore existence curve observed experimentally for the surface modified materials can be traced back to a crossover from a two-step to a single-step process of pore filling predicted by the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号