首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the second-order thermodynamic perturbation theory (TPT2) and the dimer statistical associating fluid theory (SAFTD) equations of state for mixtures consisting of hetero-nuclear hard chain molecules based on extensions of Wertheim's theory for associating fluids. The second-order perturbation theory, TPT2, is based on the hard sphere mixture reference fluid. SAFTD is an extension of TPT1 (= SAFT) and is based on the non-spherical (hard disphere mixture) reference fluid. The TPT2 equation of state requires only the contact values of the hard sphere mixture site-site correlation functions, while the SAFTD equation of state requires the contact values of site-site correlation functions of both hard sphere and hard disphere mixtures. We test several approximations for site-site correlation functions of hard disphere mixtures and use these in the SAFTD equation of state to predict the compressibility factor of copolymers. Since simulation data are available only for a few pure copolymer systems, theoretical predictions are compared with molecular simulation results for the compressibility factor of pure hard chain copolymer systems. Our comparisons show a very good performance of TPT2, which is found to be more accurate than TPT1 (= SAFT). Using a modified Percus-Yevick site-site correlation function SAFTD is found to represent a significant improvement over SAFT and is slightly more accurate than TPT2. Comparison of SAFTD with generalized Flory dimer (GFD) theory shows that both are equivalent at intermediate to high densities for the compressibility factor of copolymer systems investigated here.  相似文献   

2.
YIPING TANG 《Molecular physics》2013,111(7):1033-1047
The recently proposed equation of state of statistical associated fluid theory (SAFT) is extended to associating Lennard-Jones (LJ) chain mixtures. In this extension, a new radial distribution function (RDF) for LJ mixtures is derived around the LJ potential size (σ ij ). The RDF expression is completely analytical and real. Comparisons with computer simulation data under various conditions indicate that the RDF is very accurate up to its first peak. The new RDF, together with a previously established equation of state for LJ mixtures, is employed to study LJ chain mixtures by combining with Wertheim's first-order perturbation theory. The resulting equation of state is tested satisfactorily against computer simulation data for both non-associating and associating LJ chain mixtures, with a performance similar to its predecessors for pure LJ chains and LJ mixtures. The SAFT model is uniquely featured by being totally mixing-rule free and by being adjustable at both chain bonding and association sites. Moreover, the SAFT model is formulated very generally, so that it is applicable to both homonuclear and heteronuclear chain mixtures.  相似文献   

3.
The first-order thermodynamic perturbation theory of Wertheim (TPT1) is extended to treat ring aggregates, formed by inter- and intramolecular association. The expression for the residual association contribution to the Helmholtz free energy for ring aggregates, incorporating the appropriate terms in Wertheim's fundamental graph sum of the TPT1 density expansion, is derived to calculate the distribution of the molecular bonding states. This requires the introduction of two new parameters to characterise each possible ring type: the ring size τ, which is equal to one in the case of intramolecular association, and a parameter W that captures the likelihood of two ring-forming sites bonding. The resulting framework can be incorporated in equations of state that account for the residual association contribution to the free energy, such as the statistical associating fluid theory (SAFT) family, or the cubic plus association (CPA) equation of state. This extends the applicability of these equations of state to mixtures with an arbitrary number of association sites capable of hydrogen bonding to form intramolecular and intermolecular rings. The formalism is implemented within SAFT-VR Mie to calculate the fluid-phase equilibria of model chain-like molecules containing two associating sites A and B, allowing for the formation of open-chain aggregates and intramolecular bonds. The effect of adding a second component that competes for the association sites that mediate intramolecular association in the chain is also examined. Accounting for intramolecular bonding is shown to have a significant impact on the phase equilibria of such systems.  相似文献   

4.
5.
Liquid-crystal phase equilibria of Lennard-Jones chain fluids and the solubility of a Lennard-Jones gas in the coexisting phases are calculated from Monte Carlo simulations. Direct phase equilibria calculations are performed using an expanded formulation of the Gibbs ensemble. Monomer densities, order parameters, and equilibrium pressures are reported for the coexisting isotropic and nematic phases of: (1) linear Lennard-Jones chains, (2) a partially-flexible Lennard-Jones chain, and (3) a binary mixture of linear Lennard-Jones chains. The effect of chain length is determined by calculating the isotropic-nematic coexistence of linear Lennard-Jones chain fluids made of 8, 10, and 12 segments (8-, 10-, 12-mer). The effect of molecular flexibility on the isotropic-nematic equilibrium is studied for a Lennard-Jones 10-mer chain fluid with one freely-jointed segment at the end of the chain. An isotropic-nematic phase split and fractionation are reported for a binary mixture of linear 7-mer and 12-mer chains. Simulation results are compared with theoretical results as obtained from a recently developed analytical equation of state based on perturbation theory. Excellent agreement between theory and simulations is observed. The solubility of a monomer Lennard-Jones gas in the coexisting isotropic and nematic phases is estimated using the Widom test-particle insertion method. A linear relationship between solubility difference and density difference at isotropic-nematic coexistence is observed. It is shown that gas solubility is independent of the nematic ordering of the fluid, at constant temperature and density conditions.  相似文献   

6.
Hydrogen fluoride presents one of the strongest hydrogen bonds known. Ring aggregates exist both in the vapour and liquid phases at low temperatures resulting in an anomalously high low-temperature vapour pressure. The effect of ring-like aggregates on the vapour—liquid phase equilibria of associating fluids is studied within the framework of the statistical associating fluid theory (SAFT) and in the chemical model of Lencka and Anderko (AEOS). The SAFT approach incorporates separate contributions to describe chain formation, association (hydrogen bonding), and long range dispersion forces. The treatment of the association interactions stems from the thermodynamic perturbation theory of Wertheim. At the first level of approximation the contribution of ring-like aggregates is neglected and only chain- and treelike structures are treated. In this work an earlier extension of the approach to incorporate ring aggregates is used to model the phase behaviour of hydrogen fluoride. The chemical model of Lencka and Anderko for associating fluids is also considered together with a modification that takes into account the formation of ring aggregates. Vapour pressures and coexistence densities are examined together with heats of vapourization, and the calculations are compared with experimental data.  相似文献   

7.
8.
The density-functional (DF) method is combined with the smoothed-density approximation to calculate the fluid structure in two-dimensional (2D) hard-disc (HD) systems. Density-dependent weighting functions in the DF method proposed by Tarazona for three-dimensional fluids have been applied to 2D systems for the calculation of the radial distribution function of HD fluids and the determination of the static structure of 2D HD fluids around the central hard triatomic molecule. The results compare reasonably well with Monte Carlo data. The radial distribution of a 2D Lennard-Jones fluid has also been calculated and shown to be in satisfactory agreement with Monte Carlo data except for the high-density fluid.  相似文献   

9.
The paper presents calculations of the properties of binary mixtures of hard spheres and directionally associating hard spheres, a simple model for mixtures of nonpolar molecules with water that was developed by Nezbeda and his coworkers. Extensive results from Monte Carlo simulations in the isobaric, isothermal ensemble are presented for the density, configurational energy and chemical potentials in the mixtures for fluid states over a range of temperatures, pressures and compositions. A species exchange technique is used to compute the chemical potential difference between components in the mixtures. The results obtained are compared with the predictions of first-order thermodynamic perturbation theory (TPT). It is found that this theory provides an accurate picture of the system over most of the conditions considered. Calculations are also made of vapour–liquid coexistence for the model using TPT and calculations of solid–fluid coexistence for the model using TPT and existing results for the free energy of the pure component solids. It is found that the vapour–liquid coexistence for the model is pre-empted by the solid–fluid coexistence, as had previously been found for the pure component directionally associating hard sphere system.  相似文献   

10.
Monte Carlo simulation and theory are used to calculate the excess thermodynamic properties of binary mixtures of spherical Lennard-Jones molecules. We study the excess functions of three binary mixtures characterized by the following size and dispersive energy ratios: (1) (σ2211)3 = 2 and ?22/?11 = 2; (2) (σ2211)3 = 1 and ?22/?11 = 1/2 and (3) (σ2211)3 = 1/2 and ?22/?11 = 2. In all cases, the unlike size parameter, σ12, is kept constant and equal to the value given by the Lorentz combining rule (σ12 = (σ11 + σ22)/2). However, different unlike dispersive energy parameter values are considered through the following combining rules: (a) ?12 = (?11?22)1/2 (Berthelot rule); (b) ?12 = ?11 (association); and (c) ?12 = ?22 (solvation). The pressure and temperature dependence of the excess volume and excess enthalpy is studied using the NpT Monte Carlo simulation technique for all the systems considered. Additionally, the simplest conformal solution theory is used to check the adequacy of this approach in predicting the excess properties in a wide range of thermodynamic conditions and variety of binary mixtures. In particular, we have applied the van der Waals one-fluid theory to describe Lennard-Jones binary mixtures through the use of the Johnson et al. [1993, Molec. Phys., 78, 591] Helmholtz free energy. Agreement between simulation results and theoretical predictions is excellent in all cases and thermodynamic conditions considered. This work confirms the applicability of the van der Waals one-fluid theory in predicting excess thermodynamic properties of mixtures of spherical molecules. Furthermore, since binary mixtures of spherical Lennard-Jones molecules constitute the reference fluid to be used in perturbation theories for complex fluids, such as the statistical association fluid theory (SAFT), this work shows clearly the applicability of the conformal solution theory within the framework of SAFT for predicting excess functions.  相似文献   

11.
Yanshuang Kang 《中国物理 B》2022,31(5):56104-056104
Based on the free-energy average method, an area-weighted effective potential is derived for rectangular corrugated nano-pore. With the obtained potential, classical density functional theory is employed to investigate the structural and thermodynamic properties of confined Lennard-Jones fluid in rectangular corrugated slit pores. Firstly, influence of pore geometry on the adsorptive potential is calculated and analyzed. Further, thermodynamic properties including excess adsorption, solvation force, surface free energy and thermodynamic response functions are systematically investigated. It is found that pore geometry can largely modulate the structure of the confined fluids, which in turn influences other thermodynamic properties. In addition, the results show that different geometric elements have different influences on the confined fluids. The work provides an effective route to investigate the effect of roughness on confined fluids. It is expected to shed light on further understanding about interfacial phenomena near rough walls, and then provide useful clues for the design and characterization of novel materials.  相似文献   

12.
K P Shukla 《Pramana》1978,10(1):17-31
A perturbation method in which attractive forces are taken as perturbation of the repulsive (reference) forces is applied to calculate the thermodynamic properties of (12-6-n) fluids in terms of the properties of hard-sphere fluid. The numerical values of the thermodynamic properties (free energy per particle, compressibility and excess internal energy) for a range of temperature and density are given for (12-6-8) fluids. Further, two perturbation schemes are adopted to evaluate the total radial distribution function using the EXP version of the optimized cluster theory (OCT). The numerical results are reliable as reported at two states (T* = 1·036,ρ* = 0·65 andT* = 0·719ρ* = 0·85) for the (12-6-8) fluid and the Lennard-Jones (12-6) fluid as well.  相似文献   

13.
A new conformal solution theory using a single pure fluid as a reference substance for the calculation of thermodynamic properties of fluid mixtures is developed. The perturbation theory developed by Weeks, Chandler and Andersen (WCA) and by Verlet and Weis (VW) is used to calculate the reference properties. The mean density approximation and corresponding state principle are used to eliminate the higher order terms in the mixture system and to derive the pseudo-parameters for the reference system. The mixture properties are obtained from the reference properties and their corresponding hard sphere excess functions defined as the properties of the mixture less the value of the properties for the hard sphere mixture.

The excess functions of mixing for several liquid mixtures of Lennard-Jones fluids, obeying the Lorentz-Berthelet rule, are calculated by the new method (VW-HSE). Comparison with the results of other theories and Monte Carlo data shows definite improvement. Since only the properties of a pure reference fluid are directly calculated, the method can be applied to more complicated multicomponent systems without additional computational effort as required by other theories.  相似文献   

14.
在统计力学理论基础上,本文提出了一个考虑氢键对自扩散系数影响的方程.这个方程为非氢键贡献部分与氢键贡献部分之积,其中自扩散系数的非氢键部分由Lennard-Jones链模型求得,而一个分子中的平均氢键数随温度和密度的变化关系使用统计缔合流体理论得到。链节之间的相互作用能量参数由粘度的关联式获得,其它四个参数则由扩散系数的实验数据获得。对7个典型的缔合流体在相当宽的温度压力范围内计算的平均相对百分误差为5.98%。  相似文献   

15.
The recently proposed model of statistical associated-fluid theory (SAFT) by Tang, Y. and Lu, B. C.-Y. (2000, Fluid Phase Equilibria, 171, 27) is applied to phase diagram calculations of non-associating and associating linear chain molecules in which n-alkanes and n-alkenes (representing the non-associating type) and water, 1-alkanols, acids and amines (representing the associating type) are investigated. For polar molecules, the dipole-dipole interaction is taken into consideration. Overall, the proposed model yields similar accuracy to the original SAFT model, It is found that the volume and energy parameters of non-associating chain segments in the same family follow certain linear relations with the carbon number. Remarkably, these linear relations are found to hold equally well in associating chain molecules. These observations suggest that SAFT may be implemented in a more predictive manner. Furthermore, the inclusion of the contribution from dipole-dipole interaction improves the calculated values for strong polar molecules like water.  相似文献   

16.
The chemical potential for a two-component Lennard-Jones fluid with associative interaction between opposite species promoting the formation of dimers is calculated using osmotic Monte Carlo (OMC) canonical ensemble simulations. Grand canonical Monte Carlo simulations also are performed to verify the accuracy of the OMC approach. The data from both methods agree very well for thermodynamic states with different degrees of dimerization. It follows that the OMC is a promising approach for the determination of the thermodynamics of and equilibria between associating and non-associating fluids and associating fluid mixtures.  相似文献   

17.
We show how to use the multiple histogram method to combine canonical ensemble Monte Carlo simulations made at different temperatures and densities. The method can be applied to study systems of particles with arbitrary interaction potential and to compute the thermodynamic properties over a range of temperatures and densities. The calculation of the Helmholtz free energy relative to some thermodynamic reference state enables us to study phase coexistence properties. We test the method on the Lennard-Jones fluids for which many results are available.  相似文献   

18.
L.L. Lee  D. Levesque 《Molecular physics》2013,111(6):1351-1370
The perturbation approach developed by Weeks, Chandler, and Andersen (WCA) and by Verlet and Weis (VW) for pure systems is here generalized to the case of mixtures. We study binary mixtures of molecules interacting with the 12–6 Lennard-Jones potential, for which Monte Carlo simulations are available for comparison. The work is divided into two parts: The first part presents results of Monte Carlo calculations on mixtures of hard spheres of 864 and 1000 particles. The radial distribution functions generated are used to test the VW representation for the correlation functions of hard-sphere mixtures. This representation is found to work satisfactorily within the expected error limits. The second part deals with the two-step perturbation procedure for calculating the thermodynamic quantities of the Lennard-Jones system. The Lennard-Jones potential is divided into a reference potential, which is strictly repulsive, and an attractive part. The system of the reference potential is represented by a system of hard-sphere mixture with equivalent diameters determined by the WCA rule. Analytical expressions are given for evaluating these equivalent diameters. The Lennard-Jones system is then recovered to the first order by a λ expansion over the reference system. Comparison with Monte Carlo results for a mixture of Lennard-Jones molecules, obeying the Berthelot rule, shows that the total thermodynamic properties are reproduced by the perturbation theory to 1 per cent, while the agreement in excess properties is only moderately successful, similar to some other analytical theories compared here. To reproduce these excess properties, which are extremely small, a precision of 0·1 per cent in the theory is required. The present theory is estimated to be accurate to 1 per cent in view of the successive approximations made.  相似文献   

19.
付东  廖涛 《中国物理快报》2007,24(10):2804-2807
The excess Helmholtz free energy functional for associating Lennard-Jones (L J) fluid is formulated in terms of a weighted density approximation for short-ranged interactions and a Weeks-Chandler-Andersen approximation for long-range attraction. Within the framework of density functional theory, phase equilibria, vapour-liquid surface tension and vapour-liquid nucleation properties including the density profile, work of formation, excess number of particles and critical supersaturation are investigated for associating LJ fluids with different numbers of association sites (M =1,2, 3, 4) per particle. The influences of association energy and association sites on phase equilibria, surface tension and vapour-liquid nucleation properties are discussed.  相似文献   

20.
Wertheim's thermodynamic perturbation theory of first order (TPT1) is based on the approximation that the monomer–monomer distribution functions can be approximated by the reference fluid distribution functions regardless of the amount of bonding. This is remarkably accurate for chains formed by tangent spheres, but no longer valid for chains of fused spheres. This constitutes the reason for the inadequacy of TPT1 for fused sphere chains. We present a systematic modification of TPT1, the path integral perturbation method, that takes into account the variations of the distribution functions with extent of bonding. We demonstrate the accuracy of the theory for mixtures of hard spheres and diatomics over a range of extent of bonding (pure monomers to pure dimers) and degree of fusion (bond length 0–1). We found that the choice of reference fluid was decisive for the accuracy of the model's predictions. The proposed theory can accurately predict the properties of mixtures of hard spheres and diatomics, and of the pure fused diatomic fluids. The results from the path integral theory are in excellent agreement with simulation results, and compare favourably with the results from the Tildesley–Streett and the Boublík–Nezbeda equations of state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号