首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toshiko Katō 《Molecular physics》2013,111(5):1079-1092
The Raman spectra of the v 1(CN) stretching mode of SCN- ions have been measured in molten thiocyanates, KSCN and NaSCN, at temperatures 450-600K. The vibrational and the rotational correlation functions are calculated, and the dynamics of SCN- ions in the molten state are compared with those in aqueous solutions of KSCN, NaSCN, and LiSCN at concentrations 1–10 mol dm-3 and at temperatures 303–353 K. The observed vibrational correlation functions are analysed by the stochastic line shape theory of Kubo, in which homogeneous and inhomogeneous broadening are treated simultaneously. Both broadening contributions to the isotropic spectra are extracted. The homogeneous broadening is found to increase with increasing temperature in both melts and aqueous solutions; the inhomogeneous broadening remains constant in molten KSCN while it decreases in aqueous solutions. As the result, the isotropic Raman bandwidth is considered to increase with temperature in the molten state and to decrease in aqueous solutions. Rotational correlation functions of SCN- ions in these molten salts show the behaviour of the short time inertial rotation (t ? 0·15 ps, jump angle 20°), which is a little slower than the free rotation of a single ion. The long time exponential decay of the rotational correlation functions reflects the ultimate diffusional behaviour of the ionic reorientation. The rotational relaxation rate increases with increasing temperature in both melts and aqueous solutions. The vibrational dephasing rate decreases and the rotational relaxation rate increases as the cation size increases in melts. In aqueous solutions, the vibrational dephasing rate follows the same cation dependence as that in melts, while the rotational relaxation rate decreases as the cation size increases. This seems to be a consequence of the specific local structures in aqueous electrolyte solutions.  相似文献   

2.
A K Sood  S Dattagupta 《Pramana》1981,17(4):315-326
The three dominant mechanisms giving major contributions to vibrational relaxation in molecular systems are (a) pure dephasing, (b) depopulation (or energy relaxation), and (c) resonant transfer. Here (c) is not considered but the effects due to thesimultaneous occurrence of (a) and (b) are treated within a stochastic model. In dealing with (a), the vibrational frequency is assumed to undergo random uncorrelated ‘jump’, due to fluctuations in the environment of the active molecule between a continuous set of values. The ensuing results are somewhat different from those of the commonly used Kubo model of vibrational dephasing, especially at long times and appear to be better suited in interpreting certain experimental data. The model is next extended to include the simultaneous occurrence of (b). The calculation leads to two important conclusions: (i) the lineshape is not just the convolution of those due to (a) and (b), and (ii) the lineshape is asymmetric, if the intermolecular interactions are not isotropic.  相似文献   

3.
The I.R. and Raman bandwidths of the v(≡C-H) and v(C≡C) stretching modes of 1-hexyne and 1-decyne have been measured in dilute solutions in n C7H16 and CCl4 as a function of temperature. The I.R. spectrum is used, by comparison with the Raman spectrum, to verify the generally assumed absence of correlation between the rotational and vibrational relaxations. The important experimental findings is the opposite effect of temperature on the isotropic Raman linewidths of the two modes. The v(≡C-H) mode broadens with decreasing temperature and this is interpreted in a qualitative way by the isolated binary collision model of Fisher and Laubereau and the hydrodynamic model of Oxtoby. On the contrary, these models are unable to interpret the linewidth of the v(C≡C) mode. A possible explanation lies in an intramolecular energy relaxation between Fermi resonance levels. Finally, application of the Kubo stochastic line shape theory to the vibrational correlation function of the v(≡C-H) mode shows that the modulation is fast in n C7H16 specially at high temperature and intermediate between fast and slow limits in CCl4.  相似文献   

4.
A comparative analysis of intramolecular vibrational relaxation times of polyatomic anions in solutions of electrolytes and vibrational energy relaxation times was performed. Vibrational relaxation times were calculated by analyzing the form of isotropic Raman scattering bands. The conclusion was drawn that the main process responsible for the formation of the isotropic contour of Raman symmetrical stretching vibration bands of anions in solutions of electrolytes was vibrational dephasing. Because of the formation of ion-molecular H-bonds, vibrational dephasing and energy relaxation times decreased substantially differently.  相似文献   

5.
The Raman spectra of the totally symmetric A g modes, v 1, v 2 and v 3, of the N2O4 molecule have been measured in the liquid state at 262, 279 and 297 K. The vibrational and the rotational correlation functions are calculated. The long-time exponential decay of the rotational correlation functions of all the A g modes reflects an asymptotic diffusional behaviour of molecular reorientation. The rotational relaxation rate is found to increase with increasing temperature. A marked point of inflection from the short time inertial correlation to the long time exponential decay appears at about 0·35 ps for the v 2 mode. This is an indication of orientational rebound arising from the librational motion in a temporary solvent cage. The isotropic bandwidth increases in the order v 1 < v 2 < v 3, which is also the order of decreasing vibrational frequency. The temperature dependence of the peak frequency and of the bandwidth are also found to increase in the same order. These observations are analysed qualitatively in terms of two models of vibrational dephasing which take into account the effect of vibrational anharmonicity.  相似文献   

6.
In this paper we present the picosecond vibrational dynamics of a series of methanol aqueous solutions over a wide concentration range from dense to dilute solutions. We studied the vibrational dephasing and vibrational frequency modulation by calculating the time correlation functions of vibrational relaxation by fits in the frequency domain. This method is applied to aqueous methanol solutions xMeOH–(1???x)H2O, where x?=?0, 0.2, 0.4, 0.6, 0.8 and 1. The important finding is that the vibrational dynamics of the system become slower with increasing methanol concentration. The removal of many-body effects by having the molecules in less-crowded environments seems to be the key factor. The interpretation of the vibrational correlation function in the context of Kubo theory, which is based on the assumption that the environmental modulation arises from a single relaxation process and applied to simple liquids, is inadequate for all solutions studied. We found that the vibrational correlation functions of the solutions over the whole concentration range comply with the Rothschild approach, assuming that the environmental modulation is described by a stretched exponential decay. The evolution of the dispersion parameter α with dilution indicates the deviation of the solutions from the model simple liquid and the results are discussed in the framework of the current phenomenological status of the field.  相似文献   

7.
A theoretical model of vibrational dephasing of Raman active ions in aqueous electrolyte solutions is presented in which a probe ion is coupled to the bath by direct ion-solvent and ion-ion interactions. Expression for the vibrational width in terms of concentrations and efficiencies of the vibrational frequency modulation by ion-perturber interactions is given in the fast modulation scheme. The observed linear concentration dependence of the vibrational dephasing width of the v 1(A'1) mode of NO3 - in aqueous solutions is reasonably well explained from this model, and efficiencies of the dephasing paths through NO3 --water hydrogen bonding interaction and contact NO3 --cation pair formation interaction are estimated. Anions in the solution give only a secondary effect to nitrate vibrational dephasing because of interionic repulsive forces.  相似文献   

8.
In this paper, the spectral shape of the collision induced scattering is calculated in the dipole-induced-dipole approximation for the Raman symmetric vibrational band of optically isotropic molecules. Comparison is made with Rayleigh results. Experimental data for Rayleigh and v 1 Raman band of CF4 are discussed.  相似文献   

9.
Infrared (IR) and Raman spectra were obtained for N,N′‐dicyclohexylcarbodiimide (DCC) in the solid state and in CHCl3 solution. Structures and vibrational spectra of isolated, gas‐phase DCC molecules with C2 and Ci symmetries, computed at the B3‐LYP/cc‐pVTZ level, show that the IR and Raman spectra provide convincing evidence for a C2 structure in both the solid state and in CHCl3 solution. Using a scaled quantum‐chemical force field, these density functional theory calculations have provided detailed assignments of the observed IR and Raman bands in terms of potential energy distributions. Comparison of solid‐state and solution spectra, together with a Raman study of the melting behaviour of DCC, revealed that no solid‐state effects were evident in the spectra. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Precise polarized Raman measurements of 2‐chloropyridine (2Clpy) in the region 560–1060 cm−1 and 3‐chloropyridine (3Clpy) in the region 680–1080 cm−1 at different concentrations in mole fraction of methanol were made to calculate the isotropic part of the Raman spectra, which has contributions only from vibrational dephasing. A detailed analysis of the Raman spectra was carried out to see the variation of peak position and linewidth. The dephasing is mode specific. The trigonal bending mode of 3Clpy has two components when it is mixed with methanol. The relative intensities of these two bands are used to calculate the equilibrium constants. The ring‐breathing mode of 3Clpy, on the other hand, remains single in the mixture. The appearance of a new band corresponding to the trigonal bending mode, as well as the nonappearance of that of the ring‐breathing mode, is also shown by the density functional theory (DFT) study of gas phase and methanol‐solvated complexes. The vibrational dephasing time for the hydrogen‐bonded ring‐breathing mode is calculated from the linear Raman linewidth and peak position data. For other modes, it was not possible to calculate the dephasing time because of the nonavailability of a suitable theoretical model. Contrary to 3Clpy, in 2Clpy the ring‐breathing mode becomes a doublet but the trigonal bending mode remains single. It is seen that the hydrogen‐bonding capacity of chloropyridines is highly influenced by the position of the Cl atom. Single and double components of these modes are also explained by DFT calculations. We obtained excellent match of the experimental and theoretical spectra with the B3LYP/6‐31 + G (d,p) method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Experimental results on intensities and band shapes of collision-induced Raman scattering at the v 2 and v 3 vibrational transitions in gaseous and liquid CO2 are reported and discussed. The CO2 results are compared with new data for v 3 in SF6.  相似文献   

12.
ABSTRACT

Rate constants for the reactions of C2H6, C2H5D and C2D6 with .CCl3. for the production of CHCl3 and CDCl3 (k1, k2, k3 and k4) were computed using variational transition state theory coupled with hybrid-meta density functional theory (MPWB1K) over the temperature range of 200–2900 K. The ground-state vibrational adiabatic potential was plotted for all channels. Small- and large-curvature tunnelling were determined to include quantum effects in the calculation of rate constants. Harmonic vibrational frequencies along the reaction path were calculated in curvilinear coordinates with scaled frequencies. Anharmonicity was included in the lowest-frequency torsion. The position of formation and dissociation of bonds was specified using the variation in harmonic vibrational frequencies along the reaction path. Representative tunnelling energy and the thermally averaged transmission probability at 298 K (P(E)exp?( ? ΔE/RT)) were determined for the reactions in which tunnelling is important. The kinetic isotope effect was used to calculate the considerable contributions of tunnelling and vibration. The expressions for rate constants were determined using nonlinear least-square fitting over the temperature range of 200–2900 K.  相似文献   

13.
We have studied the coherent molecular vibrational dynamics of CH2 stretching modes in polyethylene by time‐resolved femtosecond coherent anti‐Stokes Raman spectroscopy. We observed that the coherent vibrational relaxation of symmetric CH2 stretching modes in polyethylene at room temperature is much faster than that previously measured in polyvinyl alcohol. In addition, it was detected that, at low temperature, the coherent vibrational relaxation of the symmetric stretching modes evidently becomes slower compared with that at room temperature. These temperature‐dependent measurements enable us to discriminate the contribution of pure dephasing mechanism, due to phonons and two‐level systems in polymer, from the contribution of lifetime of the vibrational excited state to the coherent vibrational relaxation of CH2 stretching modes. We conclude that the coherent vibrational relaxation of symmetric CH2 stretching modes at room temperature consists of the contribution of lifetime and approximately 1.5 times larger contribution of pure dephasing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Infrared spectra of 1,2‐bis(trifluorosilyl)ethane (SiF3CH2CH2SiF3) were obtained in the vapour and liquid phases, in argon matrices and in the solid phase. Raman spectra of the compound as a liquid were recorded at various temperatures between 293 and 270 K and spectra of an apparently crystalline solid were observed. The spectra revealed the existence of two conformers (anti and gauche) in the vapour, liquid and in the matrix. When the vapour was chock‐frozen on a cold finger at 78 K and annealed to 150 K, certain weak Raman bands vanished in the crystal. The vibrational spectra of the crystal demonstrated mutual exclusion between IR and Raman bands in accordance with C2h symmetry. Intensity variations between 293 and 270 K of pairs of various Raman bands gave ΔH(gauche—anti) = 5.6 ± 0.5 kJ mol−1 in the liquid, suggesting 85% anti and 15% gauche in equilibrium at room temperature. Annealing experiments indicate that the anti conformer also has a lower energy in the argon matrices, is the low‐energy conformer in the liquid and is also present in the crystal. The spectra of both conformers have been interpreted, and 34 anti and 17 gauche bands were tentatively identified. Ab initio and density functional theory (DFT) calculations were performed giving optimized geometries, infrared and Raman intensities and anharmonic vibrational frequencies for both conformers. The conformational energy difference derived in CBS‐QB3 and in G3 calculations was 5 kJ mol−1. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The molecular structure and conformational properties of ethyl trifluoroacetate, CF3CO2CH2CH3, were determined in the gas phase by electron diffraction, and vibrational spectroscopy (IR and Raman). The experimental investigations were supplemented by ab initio (MP2) and DFT quantum chemical calculations at different levels of theory. Experimental and theoretical methods result in two structures with Cs (anti–anti) and C1 (anti–gauche) symmetries, the former being slightly more stable than the latter. The electron‐diffraction data are best fitted with a mixture of 56% anti–gauche and 44% anti–anti conformers. The conformational preference was also studied using the total energy scheme, and the natural bond orbital scheme. Also, the infrared spectra of CF3CO2CH2CH3 are reported for the gas, liquid and solid states, as is the Raman spectrum of the liquid. The comparison of experimental averaged IR spectra of Cs and C1 conformers provides evidence for the predicted conformations in the IR spectra. Harmonic vibrational wavenumbers and scaled force fields have been calculated for both conformers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper we present the picosecond vibrational dynamics of a series of binary metaphosphate glasses, namely Na2O–P2O5, MO–P2O5 (M=Ba, Sr, Ca, Mg) and Al2O3–3P2O5 by means of Raman spectroscopy. We studied the vibrational dephasing and vibrational frequency modulation by calculating time correlation functions of vibrational relaxation by fits in the frequency domain. The fitting method used enables one to model the real line profiles intermediate between Lorentzian and Gaussian by an analytical function, which has an analytical counterpart in the time domain. The symmetric stretching modes νs(PO2?) and νs(P–O–P) of the PO2? entity of PØ2O2? units and of P–O–P bridges in metaphosphate arrangements have been investigated by Raman spectroscopy and we used them as probes of the dynamics of these glasses. The vibrational time correlation functions of both modes studied are rather adequately interpreted within the assumption of exponential modulation function in the context of Kubo–Rothschield theory and indicate that the system experiences an intermediate dynamical regime that gets only slower with an increase in the ionic radius of the cation-modifier. We found that the vibrational correlation functions of all glasses studied comply with the Rothschild approach assuming that the environmental modulation is described by a stretched exponential decay. The evolution of the dispersion parameter α with increasing ionic radius of the cation indicates the deviation from the model simple liquid indicating the reduction of the coherence decay in the perturbation potential as a result of local short lived aggregates. The results are discussed in the framework of the current phenomenological status of the field.  相似文献   

17.
A TEA CO2 laser was used to study the infrared multiple-photon absorption (IRMPA) and dissociation (IRMPD) spectra of CDCl3 in the fluence ranges 0.01–1.4 and 7–45 J/cm2, respectively, for different sample pressures. Experimental results were modeled with a master equation formulation which includes rotational and anharmonic bottlenecks and collisional effects. Experimental and calculated results show that CDCl3 has great rotational and anharmonic restrictions at the first stages of excitation. The IRMPD spectrum falls more slowly than the linear absorption spectrum at the blue wing due to intramolecular vibrational relaxation at the quasi-continuum level of excitation.  相似文献   

18.
The spectra of fluoroform (CF3H) in the solvents Ar, N2, and Xe have been obtained in the fundamental region (400–4000cm?1) using a low temperature cryostat and a Fourier transform infrared spectrophotometer. Ab initio calculations at the HF/6-31G? level have been performed to obtain the calculated vibrational frequencies of the isolated CF3H molecule and CF3H in the presence of the solvents (Ar, N2, and Xe). Comparison of the frequency shifts of CF2H in solution with respect to the gas phase frequencies is made for the experimental and theoretical results. Lorentzian functions were used to fit the bands and obtain the wavenumber at the peak absorbance and the vibrational band widths. An analysis of the dynamics of relaxation has been made based on the infrared time correlation functions for three of the fundamental modes (ν1, ν3, and ν4). Bandwidths, band moments, and relaxation times were obtained by appropriate fitting of the experimental correlation functions to theoretical models. In liquid argon, the temperature dependence of the second moment (M 2) indicates that rotational relaxation explains the bandwidth of the ν3 mode. For the ν4 mode, the temperature dependence of M 2 can be attributed to rotational relaxation if it is corrected with a Coriolis coupling term. The bandwidths of the ν1 mode do not follow the rotational relaxation model, and probably vibrational relaxation is the dominant mechanism.  相似文献   

19.
彭亚晶  孙爽  宋云飞  杨延强 《物理学报》2018,67(2):24208-024208
构建时间分辨相干反斯托克斯拉曼散射(CARS)光谱系统,从微观层次研究硝基甲烷的分子相干振动动力学特性.实验中采用超连续白光作为斯托克斯光,通过调整斯托克斯光的时间延迟,得到不同振动模式的CARS光谱.通过对振动弛豫曲线的拟合,获得硝基甲烷分子不同振动模式的振动失相时间.结果表明C–H键伸缩振动比C–N键伸缩振动更容易受热声子的影响.在热加载下,硝基甲烷分子的C–H键有望首先被激发并引起初始化学反应.  相似文献   

20.
Abstract

In liquid nitrogen at 295 K we observe for the first time the minimum in the variation of the vibrational dephasing rate T?1 2 with density at ρ = 2.15 × 1022. cm?3. At higher densities the dephasing rate shows a steep rise with density. The observed behaviour shows good agreement with results of previously published molecular dynamics simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号