首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The activation of carbon–carbon σ bonds is a complementary method to access uncommon and difficult‐to‐prepare organometallic species. Herein, we describe the activation of tert‐cyclobutanols through an enantioselective insertion of a chiral rhodium(I) complex into the C? C σ bond of the cyclobutane, forming a quaternary stereogenic center and an alkyl‐rhodium functionality that initiates ring‐closure reactions. This technology provides access to a variety of substituted cyclohexane derivatives with quaternary stereogenic centers. The formation of different product families can be controlled by the employed set of reaction conditions and additives. In general, high yields and excellent enantioselectivities of up to 99 % ee are obtained.  相似文献   

2.
Bis(iodozincio)methane, prepared from diiodomethane and zinc, reacts with an organic halide in the presence of a transition-metal catalyst to give an iodozinciomethylenated compound; this then reacts with another organic halide to form a C--C bond. The overall process connects two electrophiles with one carbon atom. Bis(iodozincio)ethane can also undergo this transformation, yielding a new stereogenic center. The asymmetric induction of this stereogenic center was investigated by using a chiral palladium catalyst.  相似文献   

3.
Ethylene, the simplest alkene, is the most abundantly synthesized organic molecule by volume. It is readily incorporated into transition‐metal‐catalyzed carbon–carbon bond‐forming reactions through migratory insertions into alkylmetal intermediates. Because of its D2h symmetry, only one insertion outcome is possible. This limits byproduct formation and greatly simplifies analysis. As described within this Minireview, many carbon–carbon bond‐forming reactions incorporate a molecule (or more) of ethylene at ambient pressure and temperature. In many cases, a useful substituted alkene is incorporated into the product.  相似文献   

4.
The exploitation of ring strain as a driving force to facilitate chemical reactions is a well‐appreciated principle in organic chemistry. The most prominent and most frequently used compound classes in this respect are oxiranes and cyclopropanes. For rather a long time, cyclobutanes lagged behind these three‐membered‐ring compounds in their development as reactive substrates, but during the past decade an increasing number of useful reactions of four‐membered‐ring substrates have emerged. This Minireview examines corresponding catalytic reactions ranging from Lewis or Brønsted acid catalyzed processes to enzymatic reactions. The main focus is placed on transition‐metal‐catalyzed C C bond‐insertion and β‐carbon‐elimination processes, which enable exciting downstream reactions that deliver versatile building blocks.  相似文献   

5.
Mechanisms based on the 1,4-migration of metal centers have been proposed to explain some interesting transition-metal-catalyzed organic transformations. Despite the lack of solid evidence for the real nature of this process, the 1,4-metal migration reaction is proposed to proceed by the reductive elimination of trivalent intermediates for the Rh-involved reactions and of tetravalent intermediates for the Pd-catalyzed processes. These high-valent organometallic species would be formed by the oxidative addition to C-H and C-X bonds. This minireview summarizes the results in this area.  相似文献   

6.
Transition‐metal‐catalyzed C? H activation has recently emerged as a powerful tool for the functionalization of organic molecules. While many efforts have focused on the functionalization of arenes and heteroarenes by this strategy in the past two decades, much less research has been devoted to the activation of non‐acidic C? H bonds of alkyl groups. This Minireview highlights recent work in this area, with a particular emphasis on synthetically useful methods.  相似文献   

7.
Bimetallic catalysis refers to homogeneous processes in which either two transition metals (TM), or one TM and one Group 11 (G11) element (occasionally Hg also), cooperate in a synthetic process (often a C? C coupling) and their actions are connected by a transmetalation step. This is an emerging research area that differs from the isolated or tandem applications of the now classic processes (Stille, Negishi, Suzuki, Hiyama, Heck). Most of the reactions used so far combine Pd with a second metal, often Cu or Au, but syntheses involving very different TM couples (e.g., Cr/Ni in the catalyzed vinylation of aldehydes) have also been developed. Further development of the topic will soon demand a good knowledge of the mechanisms involved in bimetallic catalysis, but this knowledge is very limited for catalytic processes. However, there is much information available, dispersed in the literature, coming from basic research on exchange reactions occurring out of any catalytic cycle, in polynuclear complexes. These are essentially the same processes expected to operate in the heart of the catalytic process. This Review gathers together these two usually isolated topics in order to stimulate synergy between the bimetallic research coming from more basic organometallic studies and the more synthetic organic approaches to this chemistry.  相似文献   

8.
Pick your Pd partners : A number of catalytic systems have been developed for palladium‐catalyzed C? H activation/C? C bond formation. Recent studies concerning the palladium(II)‐catalyzed coupling of C? H bonds with organometallic reagents through a PdII/Pd0 catalytic cycle are discussed (see scheme), and the versatility and practicality of this new mode of catalysis are presented. Unaddressed questions and the potential for development in the field are also addressed.

  相似文献   


9.
The transformation of C? H bonds into other chemical bonds is of great significance in synthetic chemistry. C? H bond‐activation processes provide a straightforward and atom‐economic strategy for the construction of complex structures; as such, they have attracted widespread interest over the past decade. As a prevalent directing group in the field of C? H activation, the amide group not only offers excellent regiodirecting ability, but is also a potential C? N bond precursor. As a consequence, a variety of nitrogen‐containing heterocycles have been obtained by using these reactions. This Focus Review addresses the recent research into the amide‐directed tandem C? C/C? N bond‐formation process through C? H activation. The large body of research in this field over the past three years has established it as one of the most‐important topics in organic chemistry.  相似文献   

10.
The recognition of the fundamental contributions by G. A. Olah on the elucidation of the structure of nonclassical carbocations, in the form of the award of the Nobel prize for chemistry, has recently emphasized the importance of electron-deficient bonds in the understanding of chemical bonding in organic chemistry. In the field of coordination chemistry, the formulation of electron-deficient bonds has been used for some time to describe nonclassical interactions between atoms. Traditional ligands in coordination chemistry such as amines and phosphanes bond to metal centers through their lone pair of electrons. Synergistic bonding effects dominate in the coordination of π-bonded ligands such as alkenes. In the mid-1980s the discovery of dihydrogen complexes having side-on coordination of H2 gave fresh impetus to transition metal chemistry as well as to the understanding of the interaction of σ-coordinating ligands with transition metals. In the meantime, transiton metal complexes can be obtained with a variety of σ-coordinated X-H fragments, and their mode of bonding can be understood by a common and quite general model. The chemistry of σ-bound silane ligands is particularly varied and well-investigated. These silane ligands enable the investigation of a large range of σ-coordinated metal complex fragments up to complete oxidative addition with cleavage of the Si? H bond and formation of silyl(hydrido) complexes, which has thus also widened our general understanding of the bonding of other σ-bound ligands. Whilst there is a large range of isolable and stable H2 and SiR4 complexes available, there are no such alkane analogues known at present. Only when the C? H bond is part of a ligand that is already directly bonded to the transition metal center will the resulting chelate effect stabilize this agostic C-H-M interaction. The complexation of SiH4, the simplest heavier homologue of CH4, was achieved recently. This is a further step towards the understanding of the factors which govern σ-complexation of ligands at transition metal centers.  相似文献   

11.
The ionic liquid 1‐butyl‐3‐methylimidazolium tetrafluoroborate [BMIm][BF4] has demonstrated high efficiency when applied as a solvent in the oxidative nitro‐Mannich carbon? carbon bond formation. The copper‐catalyzed cross‐dehydrogenative coupling (CDC) between N‐phenyltetrahydroisoquinoline and nitromethane in [BMIm][BF4] occurred with high yield under the described reaction conditions. Both the ionic liquid and copper catalyst were recycled nine times with almost no lost of activity. The electrochemical behavior of the tertiary amine substrate and β‐nitroamine product was investigated employing [BMIm][BF4] as electrolyte solvent. The potentiostatic electrolysis in ionic liquid afforded the desired product with a high yield. This result and the cyclic voltammetric investigation provide a better understanding of the reaction mechanism, which involves radical and iminium cation intermediates.  相似文献   

12.
This work reviews recent developments in the field of organic transformations on sigma-aryl organometallic complexes. The general notion that M--C sigma bonds are kinetically labile, highly reactive, and incompatible with typical reaction conditions met in organic synthesis has limited the use of these synthetic strategies thus far. However, organic transformations on metal-bound sigma-aryl fragments are being used more and more by chemists in both industry and academia. In this Review, emphasis is put on the synthetic methods applied in this field up to now. The simplicity and generally good yields of these methods are very attractive for the construction of functionalized organometallic building blocks that are potentially useful as photochemical molecular devices, biosensors and -conjugates, or molecular switches. Thus, this Review has been tailored for a broader audience with the aim of encouraging the application of these strategies.  相似文献   

13.
The direct functionalization of C? H bonds in organic compounds has recently emerged as a powerful and ideal method for the formation of carbon–carbon and carbon–heteroatom bonds. This Review provides an overview of C? H bond functionalization strategies for the rapid synthesis of biologically active compounds such as natural products and pharmaceutical targets.  相似文献   

14.
The Vaska-type iridium(I) complex [IrCl(CO){PPh(2)(2-MeC(6)H(4))}(2)] (1), characterized by an X-ray diffraction study, was obtained from iridium(III) chloride hydrate and PPh(2)(2,6-MeRC(6)H(3)) with R=H in DMF, whereas for R=Me, activation of two ortho-methyl groups resulted in the biscyclometalated iridium(III) compound [IrCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)] (2). Conversely, for R=Me the iridium(I) compound [IrCl(CO){PPh(2)(2,6-Me(2)C(6)H(3))}(2)] (3) can be obtained by treatment of [IrCl(COE)(2)](2) (COE=cyclooctene) with carbon monoxide and the phosphane in acetonitrile. Compound 3 in CH(2)Cl(2) undergoes intramolecular C-H oxidative addition, affording the cyclometalated hydride iridium(III) species [IrHCl(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}] (4). Treatment of 2 with Na[BAr(f) (4)] (Ar(f)=3,5-C(6)H(3)(CF(3))(2)) gives the fluxional cationic 16-electron complex [Ir(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}(2)][BAr(f) (4)] (5), which reversibly reacts with dihydrogen to afford the delta-agostic complex [IrH(CO){PPh(2)(2,6-CH(2)MeC(6)H(3))}{PPh(2)(2,6-Me(2)C(6)H(3))}][BAr(f)(4)] (6), through cleavage of an Ir-C bond. This species can also be formed by treatment of 4 with Na[BAr(f)(4)] or of 2 with Na[BAr(f)(4)] through C-H oxidative addition of one ortho-methyl group, via a transient 14-electron iridium(I) complex. Heating of the coordinatively unsaturated biscyclometalated species 5 in toluene gives the trans-dihydride iridium(III) complex [IrH(2)(CO){PPh(2)(2,6-MeC(6)H(3)CH=CHC(6)H(3)Me-2,6)PPh(2)}][BAr(f) (4)] (7), containing a trans-stilbene-type terdentate ligand, as result of a dehydrogenative carbon-carbon double bond coupling reaction, possibly through an iridium carbene species.  相似文献   

15.
The reaction of the bis(ethylene) complex [Tp(Me(2) )Ir(C(2)H(4))(2)] (1) (Tp(Me(2) ): hydrotris(3,5-dimethylpyrazolyl)borate) with two equivalents of dimethyl acetylenedicarboxylate (DMAD) in CH(2)Cl(2) at 25 degrees C gives the hydride-alkenyl species [Tp(Me(2) )IrH{C(R)=C(R)C(R)=C(R)CH=CH(2)}] (2, R: CO(2)Me) in high yield. A careful study of this system has established the active role of a number of intermediates en route to producing 2. The first of these is the iridium(I) complex [Tp(Me(2) )Ir(C(2)H(4))(DMAD)] (4) formed by substitution of one of the ethylene ligands in 1 by a molecule of DMAD. Complex 4 reacts further with another equivalent of the alkyne to give the unsaturated metallacyclopentadiene [Tp(Me(2) )Ir{C(R)=C(R)C(R)=C(R)}], which can be trapped by added water to give adduct 7, or can react with the C(2)H(4) present in solution generating complex 2. This last step has been shown to proceed by insertion of ethylene into one of the Ir--C bonds of the metallacyclopentadiene and subsequent beta-H elimination. Complex 1 reacts sequentially with one equivalent of DMAD and one equivalent of methyl propiolate (MP) in the presence of water, with regioselective formation of the nonsymmetric iridacyclopentadiene [Tp(Me(2) )Ir{C(R)=C(R)C(H)=C(R)}(H(2)O)] (9). Complex 9 reacts with ethylene giving a hydride-alkenyl complex 10, related to 2, in which the C(2)H(4) has inserted regiospecifically into the Ir--C(R) bond that bears the CH functionality. Heating solutions of either 2 or 10 in CH(2)Cl(2) allows the formation of the allyl species 3 or 11, respectively, by simple stereoselective migration of the hydride ligand to the Calpha alkenyl carbon atom and concomitant bond reorganization of the resulting organic chain. All the compounds described herein have been characterized by microanalysis, IR and NMR spectroscopy, and for the case of 3, 7, 7CO, 8NCMe, 9, 9NCMe, and 10, also by single-crystal X-ray diffraction studies.  相似文献   

16.
The C‐alkyl groups of cationic triruthenium cluster complexes of the type [Ru3(μ‐H)(μ‐κ2N1,C2 ‐L)(CO)10]+ (HL represents a generic C‐alkyl‐N‐methylpyrazium species) have been deprotonated to give kinetic products that contain unprecedented C‐alkylidene derivatives and maintain the original edge‐bridged decacarbonyl structure. When the starting complexes contain various C‐alkyl groups, the selectivity of these deprotonation reactions is related to the atomic charges of the alkyl H atoms, as suggested by DFT/natural‐bond orbital (NBO) calculations. Three additional electronic properties of the C‐alkyl C? H bonds have also been found to correlate with the experimental regioselectivity because, in all cases, the deprotonated C? H bond has the smallest electron density at the bond critical point, the greatest Laplacian of the electron density at the bond critical point, and the greatest total energy density ratio at the bond critical point (computed by using the quantum theory of atoms in molecules, QTAIM). The kinetic decacarbonyl products evolve, under appropriate reaction conditions that depend upon the position of the C‐alkylidene group in the heterocyclic ring, toward face‐capped nonacarbonyl derivatives (thermodynamic products). The position of the C‐alkylidene group in the heterocyclic ring determines the distribution of single and double bonds within the ligand ring, which strongly affects the stability of the neutral decacarbonyl complexes and the way these ligands coordinate to the metal atoms in the nonacarbonyl products. The mechanisms of these decacarbonylation processes have been investigated by DFT methods, which have rationalized the structures observed for the final products and have shed light on the different kinetic and thermodynamic stabilities of the reaction intermediates, thus explaining the reaction conditions experimentally required by each transformation.  相似文献   

17.
Hydrobromic acid was found to be a unique catalyst in C? C bond‐forming reactions with ketene dithioacetals. Distinctly different from other acids (including Lewis and Brønsted acids), the remarkable catalytic performance of hydrobromic acid in catalytic amounts was observed in the “acid”‐catalyzed reactions of readily available functionalized ketene dithioacetals 1 with various electrophiles. Under the catalysis of 0.1 equivalents of hydrobromic acid, the reaction of 1 with carbonyl compounds 2 a – l gave polyfunctionalized penta‐1,4‐dienes 3 or conjugated dienes 4 in good to excellent yields. The reaction tolerated a broad range of substituents on both the ketene dithioacetals 1 and the carbonyl compounds 2 . Application of this efficient C? C bond‐forming method generated coumarins 5 and benzofurans 7 under mild, metal‐free conditions by hydrobromic acid‐catalyzed reactions of 1 with salicylaldehydes 2 m – o and p‐quinones 6 a – d , respectively. A new reactive species, a sulfur‐stabilized carbonium ylide, formed depending on the nature of the counterion, and this was proposed as the key intermediate in the unique catalysis of hydrobromic acid.  相似文献   

18.
We have developed asymmetric Mukaiyama aldol reactions of silicon enolates with aldehydes catalyzed by chiral FeII and BiIII complexes. Although previous reactions often required relatively harsh conditions, such as strictly anhydrous conditions, very low temperatures (?78 °C), etc., the reactions reported herein proceeded in the presence of water at 0 °C. To find appropriate chiral water‐compatible Lewis acids for the Mukaiyama aldol reaction, many Lewis acids were screened in combination with chiral bipyridine L1 , which had previously been found to be a suitable chiral ligand in aqueous media. Three types of chiral catalysts that consisted of a FeII or BiIII metal salt, a chiral ligand ( L1 ), and an additive have been discovered and a wide variety of substrates (silicon enolates and aldehydes) reacted to afford the desired aldol products in high yields with high diastereo‐ and enantioselectivities through an appropriate selection of one of the three catalytic systems. Mechanistic studies elucidated the coordination environments around the FeII and BiIII centers and the effect of additives on the chiral catalysis. Notably, both Brønsted acids and bases worked as efficient additives in the FeII‐catalyzed reactions. The assumed catalytic cycle and transition states indicated important roles of water in these efficient asymmetric Mukaiyama aldol reactions in aqueous media with the broadly applicable and versatile catalytic systems.  相似文献   

19.
A copper‐catalyzed migratory oxidative‐coupling reaction between nitrones and various ethers/amines exhibited high functional‐group tolerance. Even in aqueous media, the reaction proceeded efficiently. For practical use of this catalysis, a unique sequential Huisgen cycloaddition was demonstrated. Mechanistic investigations revealed that the reaction proceeded through oxidative catalytic activation of ethers/amines to afford iminium/oxonium intermediates by concurrent dual one‐electron abstractions by copper(II) and oxyl radicals.  相似文献   

20.
The mechanism of the [(Cp*MCl2)2] (M=Rh, Ir)‐catalyzed oxidative annulation reaction of isoquinolones with alkynes was investigated in detail. In the first acetate‐assisted C? H‐activation process (cyclometalated step) and the subsequent mono‐alkyne insertion into the M? C bonds of the cyclometalated compounds, both Rh and Ir complexes participated well. However, the desired final products, dibenzo[a,g]quinolizin‐8‐one derivatives, were only formed in high yield when the Rh species participated in the final oxidative coupling of the C? N bond. Moreover, a RhI sandwich intermediate was isolated during this transformation. The iridium complexes were found to be inactive in the oxidative coupling processes. All of the relevant intermediates were fully characterized and determined by single‐crystal X‐ray diffraction analysis. Based on this mechanistic study, a RhIII→RhI→RhIII catalytic cycle was proposed for this reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号