首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to study the influence of particle shape on the microstructure evolution and the mechanical properties of granular materials, a two-dimensional DEM analysis of samples with three particle shapes, including circular particles, triangular particles, and elongated particles, is proposed here to simulate the direct shear tests of coarse-grained soils. For the numerical test results, analyses are conducted in terms of particle rotations, fabric evolution, and average path length evolution. A modified Rowe's stress–dilatancy equation is also proposed and successfully fitted onto simulation data.  相似文献   

2.
钱劲松  陈康为  张磊 《力学学报》2018,50(5):1041-1050
料在摊铺后形成的颗粒定向排列将导致其力学性质的固有各向异性. 依据粒料的实际不规则形状, 构建了可模拟粒间咬合嵌挤作用的三维离散元复杂形状颗粒; 生成了5 种不同沉积方向的各向异性试件和1种各向同性试件, 对比了各试件在三轴压缩试验中的宏观力学特性差异; 引入组构张量以量化各向异性程度, 利用玫瑰图表达接触法向与接触力的分布特征, 探究了粒料各向异性的细观发展规律. 结果表明: 颗粒长轴愈趋向水平排布, 峰值应力比愈大, 剪缩与剪胀程度愈明显; 相较于各向同性试件, 沉积角$\theta$为料在摊铺后形成的颗粒定向排列将导致其力学性质的固有各向异性. 依据粒料的实际不规则形状, 构建了可模拟粒间咬合嵌挤作用的三维离散元复杂形状颗粒; 生成了5 种不同沉积方向的各向异性试件和1种各向同性试件, 对比了各试件在三轴压缩试验中的宏观力学特性差异; 引入组构张量以量化各向异性程度, 利用玫瑰图表达接触法向与接触力的分布特征, 探究了粒料各向异性的细观发展规律. 结果表明: 颗粒长轴愈趋向水平排布, 峰值应力比愈大, 剪缩与剪胀程度愈明显; 相较于各向同性试件, 沉积角$\theta$为$0^\circ$时, 峰值应力比和最大体积压缩应变分别提高了12.6\%和18.8\%, 其原因在于加载过程中颗粒旋转和滑动百分比更小, 内部调整时间更短、更易被剪密; 固有各向异性对颗粒法向接触力分布的影响不大, 但显著影响接触法向分布特征; 剪切过程中, $\theta$为$90^\circ$时的接触法向各向异性系数先快速减小后逐渐增大, 而$\theta$为$0^\circ$到$60^\circ$时则呈现出增大后稍有回落或趋于稳定的趋势, 且$\theta$ 愈小的试件各向异性系数增大愈快.  相似文献   

3.
Radiation absorption by preferentially concentrated particles in a turbulent square duct flow is studied experimentally. The particle-laden flow is exposed to near-infrared radiation, and the gas phase temperature statistics are measured along the wall bisector of the duct. It is found that the instantaneous temperature fluctuations are comparable to the overall mean temperature rise. The temperature statistics at the duct centerline and near the wall are qualitatively different. The former reflects preferential concentration in isotropic flows while the latter displays evidence of particle clustering into streamwise elongated streaks. Comparison of the experimental data to a simplified heat transfer model suggests that the Lagrangian evolution of particle clusters and voids, and turbulent mixing in the vicinity of particle clusters, are important. This work was motivated by particle solar receiver technology, but the findings are also relevant to systems where there is localized heat release or mass transfer from disperse particles or droplets. It shows that obtaining Lagrangian histories of particle trajectories is an important next step towards understanding thermal transport phenomena in particle-laden turbulent flows.  相似文献   

4.
Here we report experiments on particle cluster settling at high Reynolds number in quiescent liquid contained in a vessel. The particles were observed to spread at the vessel bottom surface in a near-circular annular shape after settling irrespective of the shape of the vessel cross-section and particle shape, size, and types. Effect of different parameters such as mass, type and aspect ratio of the particles, height, and viscosity of liquid was investigated on spreading behaviour. Formation of the hemispherical bottom cap of the cluster that bounces upon hitting the vessel bottom surface was found to be responsible for the final circular annular shape of the settled structure. Particle leakage from the cluster was seen in the form of a tail. In the liquid having viscosity beyond 100 cP, cluster breakage was observed that resulted in hindered settling and asymmetric shapes of finally settled particles. The observations are useful to understand the overall area over which settling and spreading of such clusters can be observed.  相似文献   

5.
A new simulation framework was created for modeling the dynamics of arbitrarily shaped particles dispersed in Newtonian fluid. Theoretical complexity usually restricts suspension simulations to those for spheroids. This new simulation is loosely based on the Stokesian Dynamics method including long range hydrodynamic interaction and uses spheres as building components for greater particulates of arbitrary shape. This approach is capable of accurately reproducing the dynamics of an isolated arbitrarily shaped particle. As verification, the simulated results are compared against known results for a rod-like particle. An elongated rod-shaped structure made from linked spheres is shown to reproduce the well-known elongated ellipsoidal particle dynamics described by [Jeffrey Proc R Soc Lond A 102:161–179, 1923]. The predicted orbital period and spin rates for a fiber in shear are reproduced and compare well with theoretical prediction over a wide aspect ratio range. Predicted particle dynamics for other shaped particles are then demonstrated.  相似文献   

6.
The motion and deformation of soft particles are commonly encountered and important in many applications. A discrete element-embedded finite element model (DEFEM) is proposed to solve soft particle motion and deformation, which combines discrete element and finite element methods. The collisional surface of soft particles is covered by several dynamical embedded discrete elements (EDEs) to model the collisional external forces of the particles. The particle deformation, motion, and rotation are independent of each other in the DEFEM. The deformation and internal forces are simulated using the finite element model, whereas the particle rotation and motion calculations are based on the discrete element model. By inheriting the advantages of existing coupling methods, the contact force and contact search between soft particles are improved with the aid of the EDE. Soft particle packing is simulated using the DEFEM for two cases: particle accumulation along a rectangular straight wall and a wall with an inclined angle. The large particle deformation in the lower layers can be simulated using current methods, where the deformed particle shape is either irregular in the marginal region or nearly hexagonal in the tightly packed central region. This method can also be used to simulate the deformation, motion, and heat transfer of non-spherical soft particles.  相似文献   

7.
A two-dimensional coupled lattice Boltzmann immersed boundary discrete element method is introduced for the simulation of polygonal particles moving in incompressible viscous fluids. A collision model of polygonal particles is used in the discrete element method. Instead of a collision model of circular particles, the collision model used in our method can deal with particles of more complex shape and efficiently simulate the effects of shape on particle–particle and particle–wall interactions. For two particles falling under gravity, because of the edges and corners, different collision patterns for circular and polygonal particles are found in our simulations. The complex vortexes generated near the corners of polygonal particles affect the flow field and lead to a difference in particle motions between circular and polygonal particles. For multiple particles falling under gravity, the polygonal particles easily become stuck owing to their corners and edges, while circular particles slip along contact areas. The present method provides an efficient approach for understanding the effects of particle shape on the dynamics of non-circular particles in fluids.  相似文献   

8.
9.
When a porous agglomerate immersed in a fluid is submitted to a shear flow, hydrodynamic stresses acting on its surface may cause a size reduction if they exceed the cohesive stress of the agglomerate. The aggregates forming the agglomerate are slowly removed from the agglomerate surface. Such a behaviour is known when the suspending fluid is Newtonian but unknown if the fluid is viscoelastic. By using rheo-optical tools, model fluids, carbon black agglomerates and particles of various shapes, we found that the particles had a rotational motion around the vorticity axis with a period which is independent on shape (flat particles not considered), but which is exponentially increasing with the elasticity of the medium expressed by the Weissenberg number (We). Spherical particles are always rotating for We up to 2.6 (largest investigated We in this study) but elongated particles stop rotating for We>0.9 while orienting along the flow direction. Erosion is strongly reduced by elasticity. Since finite element numerical simulation shows that elasticity increases the local stress around a particle, the origin of the erosion reduction is interpreted as an increase of cohesiveness of the porous agglomerate due to the infiltration of a viscoelastic fluid.  相似文献   

10.
The paper concerns the effect of particle inertia on acceleration statistics. A simple analytical model for predicting the acceleration of heavy particles suspended in an isotropic homogeneous turbulent flow field is developed. This model is capable of describing the influence of both Stokes and Reynolds numbers on the particle acceleration variance. Comparisons of model predictions with numerical simulations are presented.  相似文献   

11.
Particle behavior in a turbulent flow in a circular pipe with a bed height h = 0.5R is studied at Reb = 40,000 and for two sizes of particles (5 μm and 50 μm) using large eddy simulation, one-way coupled with a Lagrangian particle tracking technique. Turbulent secondary flows are found within the pipe, with the curved upper wall affecting the secondary flow formation giving rise to a pair of large upper vortices above two smaller vortices close to the pipe floor. The behavior of the two sizes of particle is found to be quite different. The 50 μm particles deposit forming irregular elongated particle streaks close to the pipe floor, particularly at the center of the flow and the pipe corners due to the impact of the secondary flows. The deposition and resuspension rate of the 5 μm particles is high near the center of the floor and at the pipe corners, while values for the 50 μm particles are greatest near the corners. Near the curved upper wall of the pipe, the deposition rate of the 5 μm particles increases in moving from the wall center to the corners, and is greater than that for the larger particles due to the effects of the secondary flow. The maximum resuspension rate of the smaller particles occurs above the pipe corners, with the 50 μm particles showing their highest resuspension rate above and at the corners of the pipe.  相似文献   

12.
In the present article, we study the effect of inherent anisotropy, i.e., initial bedding angle of particles and associated voids on macroscopic mechanical behavior of granular materials, by numerical simulation of several biaxial compression tests using the discrete element method (DEM). Particle shape is considered to be irregular convex-polygonal. The effect of inherent anisotropy is investigated by following the evolution of mobilized shear strength and volume change during loading. As experimental tests have already shown, numerical simulations also indicate that initial anisotropic condition has a great influence on the strength and deformational behavior of granular assemblies. Comparison of simulations with tests using oval particles, shows that angularity influences both the mobilized shear strength and the volume change regime, which originates from the interlocking resistance between particles.  相似文献   

13.
The structure of particle-laden,underexpanded free jets   总被引:1,自引:0,他引:1  
M. Sommerfeld 《Shock Waves》1994,3(4):299-311
Underexpanded, supersonic gas-particle jets were experimentally studied using the shadowgraph technique in order to examine the influence of the dispersed particles on the shape of the free jet and the structure of the imbedded shock waves. The particle mass loading at the nozzle exit was varied between zero and one, and two sizes of particles (i.e. spherical glass beads) with mean number diameters of 26 and 45 m were used. It was found that the Mach-disc moves upstream towards the orifice with increasing particle loading. The laser light sheet technique was also used to visualize the particle concentration distribution within the particle jet and the spreading rate of the particle jet. Furthermore, the particle velocity along the jet centerline was measured with a modified laser-Doppler anemometer. These measurements revealed that the particles move considerably slower than the gas flow at the nozzle exit. This is mainly the result of the particle inertia, whereby the particles are not accelerated to sonic speed in the converging part of the nozzle.In order to further explore the particle behavior in the free jet, numerical studies were performed by a combined Eulerian/Lagrangian approach for the gas and particle phases, including full coupling between the two phases. The numerical results showed that the application of different particle velocities at the nozzle exit as the inlet conditions, which were below the sonic speed of the gas phase has a significant influence on the free jet shape and the configuration of the shock waves. These results demonstrate that the assumption of equilibrium flow (i.e. zero slip between the phases) at the nozzle exit which has been applied in most of the previous numerical studies is not justified in most cases. Furthermore, the numerical calculations of the free jet shape and the particle velocity along the jet axis were compared with the measurements. Although correlations for rarefaction and compressibility effects in the drag coefficient were taken into account, the particle velocity along the center line was considerably overpredicted.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

14.
Analytical solutions for the displacement and stress fields due to a misfit particle in a host matrix can be difficult to obtain, especially for complex particle geometries. In this work, we present a numerical method for finding such fields in the case of infinitely-long particles. The method is based on discretizing the continuous misfit region between the particle and matrix into local misfit regions consisting of interstitial dislocation loops. The results presented here indicate very good agreement with analytical solutions and better convergence with increasing loop density.  相似文献   

15.
Finite element analysis was performed over a small particle field, edge constraint plane strain post-necking model. The aim is to understand the roles of particle shape, volume fraction and distribution over the post-necking deformation and fracture of AA5754-O sheet materials. For models containing one single particle, the post-necking deformation decreases when the particle varies from circular to elliptical. The inter-particle spacing, the major parameter of distribution to determine whether a pair of particles belongs to a stringer or not, was varied for models with two particles of circular or elliptical shape. The general trend is that the post-necking deformation and fracture strains decrease with decreasing spacing between particles. There is considerable difference in terms of both fracture topographies and strains for models containing 16 particles when distributions varied from random/uniform to stringer distributions. The post-necking deformation and fracture strains monotonically decrease with particle volume fractions for models with 4–64 particles of random or stringer distribution. This indicates that the post-necking behavior for AA5754-O alloys where the matrix material is rather ductile is not solely controlled by a single or pair of particles although they may become initiation places of damage. Multiple damaging sources such as stringers or large particles can act cooperatively and speed up the damaging propagation of the material, and therefore produce small post-necking deformation and early fracture. The center clustering of particles can be beneficial for post-necking behavior and bendability of sheet materials.  相似文献   

16.
Numerical simulations are performed of dispersion and polydispersity of particles in isotropic incompressible turbulence. The mass loading of the particles is assumed to be small; thus the effects of particles on turbulence is neglected (one-way coupling). A stochastic model is employed to simulate the carrier phase. The results of the simulations are compared with direct numerical simulation (DNS) data and theoretical results. The stochastic model predicts most of the trends as portrayed by DNS and theory. However, the continuity effect associated with the crossing trajectories effect is not captured. Also, the peaking in the variation of the particle asymptotic diffusivity coefficient with the particle time constant is not observed. For evaporating particles, the stochastic model predicts thinner probability density functions (pdfs) for the particle diameter as compared with DNS generated pdfs. The model is implemented to investigate the effects of gravity on evaporation. It is shown that the depletion rate increases with increase of the drift velocity at short and intermediate times, but an opposite trend is observed at long times. The standard deviation and skewness of the particle diameter indicate peak values in their variations with the drift velocity. Dispersion of evaporating particles decreases with respect to that of non-evaporating particles at small drift velocities; an opposite trend is observed at large drift velocities. The effects of the initial evaporation rate and the particle Schmidt number on the evaporation in the gravity environment are also studied.  相似文献   

17.
We report three-dimensional particle mechanics static calculations that predict the microstructure evolution during die-compaction of elastic spherical particles up to relative densities close to one. We employ a nonlocal contact formulation that remains predictive at high levels of confinement by removing the classical assumption that contacts between particles are formulated locally as independent pair-interactions. The approach demonstrates that the coordination number depends on the level of compressibility, i.e., on Poisson's ratio, of the particles. Results also reveal that distributions of contact forces between particles and between particles and walls, although similar at jamming onset, are very different at full compaction. Particle–wall forces are in remarkable agreement with experimental measurements reported in the literature, providing a unifying framework for bridging experimental boundary observations with bulk behavior.  相似文献   

18.
Blockage is an important phenomenon in particulate flow. Work was undertaken to provide a better understanding of key hydrodynamic multiphase flow factors which cause, or contribute to, stalling and blockage in particulate feeding systems such as those used for feeding biomass into reactors. Rubber and plastic particles were hydraulically conveyed along a horizontal rectangular duct leading to constrictions of different geometries. Experimental results showed that large size, irregular shape, high volumetric concentrations of particles, small constriction dimensions and particle compressibility all increased the likelihood of blockage. Reynolds number also had a significant effect on particle behaviour and blockage propensity. The pressure drop needed to break a blockage is also considered, based on a simple horizontal packed bed model.  相似文献   

19.
In this article, the effect of reactive surface areas associated with different particle shapes on the reactive infiltration instability in a fluid-saturated porous medium is investigated through analytically deriving the dimensionless pore-fluid pressure-gradient of a coupled system between porosity, pore-fluid flow and reactive chemical-species transport within two idealized porous media consisting of spherical and cubic grains respectively. Compared with the critical dimensionless pore-fluid pressure-gradient of the coupled system, the derived dimensionless pore-fluid pressure-gradient can be used to assess the instability of a chemical dissolution front within the fluid-saturated porous medium. The related theoretical analysis has demonstrated that (1) since the shape coefficient of spherical grains is greater than that of cubic grains, the chemical system consisting of spherical grains is more unstable than that consisting of cubic grains, and (2) the instability likelihood of a natural porous medium, which is comprised of irregular grains, is smaller than that of an idealized porous medium, which is comprised of regular spherical grains. To simulate the complicated morphological evolution of a chemical dissolution front in the case of the chemical dissolution system becoming supercritical, a numerical procedure is proposed for solving this kind of problem. The related numerical results have demonstrated that the reactive surface area associated with different particle shapes can have a significant influence on the morphological evolution of an unstable chemical-dissolution front within fluid-saturated porous rocks.  相似文献   

20.
Particle dispersal by blast waves is an interesting phenomenon. A model problem, i.e., a sudden release of a compressed gas–particle mixture contained in a spherical container, is employed to investigate the fundamental physics of particle dispersal. The problem is simulated by the multiphase flow models proposed in Part 1 of this article that include unsteady contributions in momentum and energy exchange between gas and particles. At early times, when particles are accelerated in the expansion fan, unsteady force and heating contributions are much larger than the corresponding quasi-steady contributions. Consequently, neglecting unsteady contributions leads to significant errors in particle front location (the boundary of the particle cloud). The complex wave interactions in the flow have strong influence on the particle motion. As a result, the particle motion is a non-monotonic function of particle density or diameter and the evolution of particle concentration is non-uniform and unsteady.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号