首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 751 毫秒
1.
Surface rheology governs a great variety of interfacial phenomena such as foams or emulsions and plays a dominant role in several technological processes such as high-speed coating. Its major difference with bulk rheology resides in the high compressibility of the surface phase, which is the direct consequence of the molecular exchange between adsorbed and dissolved species. In analogy to bulk rheology, a complex surface dilational modulus, epsilon, which captures surface tension changes upon defined area changes of the surface layer, can be defined. The module epsilon is complex, and the molecular interpretation of the dissipative process that gives rise to the imaginary part of the module is subject to some controversy. In this contribution, we used the oscillating bubble technique to study the surface dilational modulus in the mid-frequency range. The dynamic state of the surface layer was monitored by a pressure sensor and by surface second-harmonic generation (SHG). The pressure sensor measures the real and imaginary part of the modulus while SHG monitors independently the surface composition under dynamic conditions. The experiment allows the assessment of the contribution of the compositional term to the surface dilational modulus epsilon. Two aqueous surfactant solutions have been characterized: a surface elastic and a surface viscoelastic solution. The elastic surface layer can be described within the framework of the extended Lucassen-van den Tempel Hansen model. The change in surface concentration is in phase with the relative area change of the surface layer, which is in strong contrast with the results obtained from the surface viscoelastic solution. Here, surface tension, area change, and surface composition are phase-shifted, providing evidence for a nonequilibrium state within the surface phase. The data are used to assess existing surface rheology models.  相似文献   

2.
利用Langmuir槽法研究了含聚氧乙烯醚链中间链的两性Gemini表面活性剂C8E4NC12、阳离子Gemini表面活性剂C12NE3NC12和阴离子Gemini表面活性剂C8E4C8在空气/水表面和癸烷/水界面上的扩张性质,考察浓度对3种Gemini表面活性剂溶液表、界面扩张性质的影响.结果表明,由于分子间存在库仑引力,两性Gemini分子表现出较高的扩张弹性和粘性,且界面扩张性质类似于表面.对于有相同电荷Gemini分子,C8E4C8分子中的刚性苯环导致其疏水长链在表面上的取向不同于C12NE3NC12分子,两者表现出不同的表面扩张性质;而油分子能改变同电荷Gemini分子中长链烷基的取向,造成其界面扩张弹性和粘性远低于表面.提出了不同电性Gemini分子在界面排布的示意图,并利用弛豫过程的特征参数进行了验证.  相似文献   

3.
The dynamic dilational viscoelastic properties of polyoxyethylene alkyl ether carboxylic salts at the air-water interface were investigated by drop shape analysis method and their foam stability were measured by Bikerman Method. The influences of time, dilational frequency, and bulk concentration on surface dilational modulus and phase angle were expounded. The results show that the surfactant with the longest straight-chain shows the highest dilational modulus, which in agreement with the best foam stability. However, the foam stability of branched-alkyl chain surfactant cannot be explained in terms of film elasticity alone.  相似文献   

4.
The mixed adsorption of a cationic gemini surfactant, ethanediyl-1,2-bis(dodecyldimethylammonium bromide) (abbreviated as 12-2-12), and an anionic conventional surfactant, sodium dodecyl sulfate (SDS), was examined using surface tension measurements. The viscoelastic properties of the mixed films were investigated by dilational interfacial rheology technique. The results showed that the addition of SDS promoted the close packing of adsorbed molecules at the interface, which increased the dilational elasticity of the mixed films. The stability of the foams was determined by the half-life of foam height collapse. The foams generated by 12-2-12/SDS mixtures were more stable than that formed by pure 12-2-12. In the presence of sodium bromide, the foam stability was further enhanced and the surfactant concentration required to attain the maximum effect in stabilizing foams was greatly reduced. The high foam stability could well relate to the high elasticity of the film.  相似文献   

5.
The monostearin monolayer at the air-aqueous interface is more expanded in presence of glycine and at higher temperature from both the surface pressure-area per molecule (pi-A) isotherms and static elasticity-surface pressure (E(s)-pi) curves. The dilational viscoelastic properties of monostearin monolayer spread on the subphase of glycine solution have been determined by the dynamic oscillation method and discussed as a function of surface pressure, temperature, and frequency. At the frequency of 50 mHz, the monostearin monolayer on pure water shows negative dilational viscosity and is viscoelastic at some surface pressures, while the monostearin monolayer in the presence of glycine is nearly elastic over a wide range of surface pressure, especially at 25 degrees C. Both positive and negative loss angle tangent can be deduced as a function of surface pressure. The negative dilational viscosity can be attributed to the phase transitions induced by the propagation of the surface waves during the dynamic oscillation. It can be convinced that the interactions between monostearin and glycine play an important role in the formation and rheological behavior of the monolayer. On the other hand, temperature has effect on the dilational elasticity and the dilational viscosity of the monostearin monolayer in different extents. Furthermore, at the surface pressure of 20 mN/m, the monostearin monolayer on the glycine solution at 18 degrees C is essentially elastic at lower frequency (<100 MHz) and shows viscoelastic behavior at higher frequency. These phenomena should be associated with the complicated monolayer structure and structural reorganization due to the interactions between monostearin and glycine in presence of glycine.  相似文献   

6.
The dynamic dilational properties of branched alkyl benzene sulfonates at the air–water and decane–water interfaces were investigated by drop shape analysis, and their lamella stability was measured. The influences of time, dilational frequency, and bulk concentration on surface dilational elasticity and dilational viscosity were expounded. The results show that the molecular interaction controls the nature of adsorption film during lower concentration range and the film behaves elastic in nature. During higher concentration range, the diffusion-exchange process controls the dynamic dilational properties and the surface film shows remarkable viscoelasticity. An increase in hydrophobic chain length enhances the molecular interaction, which results in the increase of dilational parameters and lamella stability. The data correlation suggests that the ability to form a stable lamella is linked to the intrinsic surface dilational elasticity.  相似文献   

7.
Hydroxyl sulfobetaines with hexadecyl-, octadecyl-hydrophobic chain and an industrial product hydroxyl sulfobetaine were synthesized from analytical-grade and industrial-grade tertiary amine, respectively. The dilational properties and surface tension of the three surfactants at the water-air interface were investigated by drop shape analysis and ring method. The influences of oscillating frequency and bulk concentration on dilational properties were explored. The experimental results show that the dilational module of octadecyl-hydroxyl sulfobetaine was higher than hexadecyl hydroxyl sulfobetaine and the dilational elastic component of the three surfactants were higher than dilational viscous component. Furthermore, the dilational elastic component of mixed surfactant system shows two maxima in a lower concentration than that of single surfactant system. As a result, the surface tension of mixed surfactant system reaches to minimum value in a lower concentration compared with single surfactant system. The simulation results show that the hydrophobic chains in the mixed betaine solution were more curled than in single-component betaine solution ascribed to stronger interaction among different hydrophobic chains, resulting to a more compact interfacial film.  相似文献   

8.
疏水缔合共聚物与表面活性剂的界面相互作用   总被引:1,自引:0,他引:1  
采用界面张力弛豫法研究了疏水缔合聚合物聚丙烯酰胺/2-乙基己基丙烯酸酯[P(AM/2-EHA)]在正辛烷-水界面上的扩张粘弹性质, 考察了不同类型表面活性剂十二烷基硫酸钠(SDS)、聚环氧乙烯醚(Tx-100)和十六烷基三甲基溴化铵(CTAB)对其界面扩张性质的影响. 研究发现, 界面上的表面活性剂分子可以与聚合物的疏水嵌段形成类似混合胶束的聚集体, 表面活性剂分子与聚集体之间存在快速交换. 这种弛豫过程的特征时间远比分子在体相与界面间的扩散交换时短. 当界面面积增大时, 上述混合胶束中的表面活性剂分子能快速释放, 在界面层内原位快速消除界面张力梯度, 从而大大降低界面扩张弹性. 界面上的CTAB分子与聚合物链节上的负电中心通过较强的电荷吸引作用形成复合物. 当界面面积增大时, 上述混合胶束中的CTAB分子释放较慢, 界面张力梯度较大. 非离子表面活性剂Tx-100分子量较大, 扩散速率较慢, 它在界面上与聚集体间的交换比阴离子表面活性剂SDS慢, 其特征时间约为0.9 s.  相似文献   

9.
The dilational viscoelastic properties of Silwet L-77, a trisiloxane surfactant of the general formula (Me3SiO)2SiMe(CH2)3(OCH2CH2)7.5OH, at the air/water interface were investigated. Aqueous solutions of Silwet L-77 were spread onto a pendant drop and the dynamic surface tensions were measured by means of axisymmetric drop shape analysis. The surface dilatational elasticity, viscosity, and phase angle of the adsorption monolayer were also determined using the oscillating drop technique. The influences of frequency and concentration on the surface dilational properties were expounded. It is shown that the surface dilational modulus and elastic modulus increased with the increase of frequency, the viscous modulus was complex, while the phase angle decreased with the increase of frequency. Surface dilational modulus, elastic modulus, and viscous modulus passed through the maximum with the increase of bulk concentration and the phase angle increased with the increase of concentration.  相似文献   

10.
驱油体系化学剂间相互作用对界面吸附膜的影响   总被引:1,自引:0,他引:1  
采用界面张力弛豫技术研究了不对称Gemini表面活性剂C12COONa-p-C9SO3Na、部分水解聚丙烯酰胺Mo-4000、疏水缔合水溶性聚丙烯酰胺(HMPAM)等驱油体系化学剂在癸烷/水界面上的扩张流变性质,考察了不同离子强度、不同类型电解质对体系界面流变性质的影响,计算得到界面扩张弹性模量和粘性模量的全频率谱,并通过归一化方法(cole-cole图)探讨了界面吸附膜的弛豫过程。研究发现,界面膜内分子重排和界面与体相间分子扩散交换是影响膜性质的主要弛豫过程。表面活性剂体相浓度增大有利于界面分子重排过程,而低频有利于扩散交换过程;不同结构聚合物以及不同离子强度、不同类型电解质对表面活性剂吸附膜有不同的影响。  相似文献   

11.
The interfacial dilational viscoelastic properties of hydrophobically associating block copolymer composed of acrylamide (AM) and a low amount of 2‐ethylhexyl acrylate (EHA) (<1.0 mol%) with a hydrolyzed degree of about 1.5–2.0% at the octane‐water interfaces were investigated by means of two methods: the interfacial tension response to sinusoidal area variations (oscillating barriers method) and the relaxation of an applied stress (interfacial tension relaxation method) respectively. The influence of cationic surfactant cetyl trimethylammonium bromide (CTAB) on the dilational viscoelastic properties was studied. The results obtained by oscillating barriers method showed that dilational modulus decreased moderately with the increase of CTAB concentration. The results obtained by interfacial tension relaxation measurements showed that two main relaxation processes exist in the interface at 7,000 ppm polymer concentration: one is the fast process involving the exchange of hydrophobic blocks between the proximal region and distal region in the interface; the other is the slow relaxation process involving conformational changes of polymer chain in the interface. By adding CTAB, the slow process changed obviously due to the strong electrostatic interaction between oppositely charged surfactant and hydrolyzed part of polymer chain. Only when the CTAB concentration was close to the “equal charge point,” the associations formed mainly by the hydrophobic interaction like that in SDS/polymer system appeared and the characteristic time of fast process decreased obviously. The information of relaxation processes obtained from interfacial tension relaxation measurements can explain the results from dilational viscoelasticity measurements very well.  相似文献   

12.
In the slide hopper coating process for simultaneously applying multiple layers of coating liquids to a moving web, surfactants must be added to the photographic emulsion to ensure a stable position of the liquid bridge formed between the lower edge of the slide hopper and the moving web. In slide coating of gelatin solutions without an added surfactant, the liquid bridge becomes instable and begins to oscillate if critical coating conditions are reached. The addition of anionic surfactants stabilizes the liquid bridge against oscillations. The action of the added surfactants is a result of their interaction with gelatin. The degree of binding can be used as a measure of the interaction. The binding of anionic and cationic surfactants to gelatin was investigated using a surfactant-selective electrode. The binding isotherms of the surfactants to an alkali-processed bone gelatin were determined and compared with the surface dilational properties of the gelatin/surfactant adsorption layers. The comparison of surface rheological data obtained by the oscillating bubble method with the results of coating experiments demonstrates that the viscoelastic properties of gelatin/anionic surfactant adsorption layers are of essential importance to the stabilization of the liquid bridge against oscillations. Pure elastic adsorption layers are not able to stabilize the liquid bridge. The mechanism of the stabilizing action is discussed. Received: 30 October 2000/Revised: 12 February 2001/Accepted: 14 February 2001  相似文献   

13.
The dilational viscoelastic properties of partly hydrolyzed polyacrylamide (HPAM) and surfactant (C12COONa-p-C9SO3Na) in the absence or presence of electrolyte were investigated at the decane–water interface by means of longitudinal method and the interfacial tension relaxation method. The polymer plays different roles in influencing the structure of HPAM–surfactant mix-adsorbed layer at different surfactant concentration. At low surfactant concentration, the addition of polymer could sharply decrease the dilational elasticity mainly due to the weakening of the “entanglement” among long alkyl chains in surfactant molecules, while the addition of the polymer may enhance the dilational elasticity due to the slow diffusivity of the polymer chains at higher surfactant concentration. And the added electrolyte, which results in screening of electrostatic interactions between the ionized groups, generally decreases the interfacial dilational elasticity and increases the dilational viscosity. The data obtained on the relaxation processes via interfacial tension relaxation measurement can explain the results from dilational viscoelasticity measurements very well.  相似文献   

14.
In this article, foaming properties and dynamic interfacial properties of a series of sodium 2,5-dialkyl benzene sulfonates in aqueous solutions were carried out to elucidate the relationship between foaming properties and dynamic interfacial properties. The properties of foams generated from bubbling air through different surfactant solutions were measured using a modified Bikerman device. The dynamic surface tension and surface dilational elasticity were obtained from an image analysis technique based on the oscillating bubble method. The surfactants molecular adsorption at the air/water interface was introduced with Rosen empirical equation and the rate of adsorption was determined from measurements of the dynamic surface tension. The surfactant with the longest alkyl chain shows the lowest dynamic surface activity, which lead to the lowest foam volume. The short ortho straight alkyl chain has little effect on the arrangement of molecules at the interface and the foam stability changes a little with the changing of the ortho alkyl chain length. The foam stability is correlated with both the higher surface dilational elasticity and the larger surface monolayer strength.  相似文献   

15.
We propose a theoretical model for the motion of a spherical particle entrapped in a thin liquid film or in a monolayer of insoluble surfactant at the air/water interface. Both surface shear and dilational viscosity, surface diffusion, and elasticity of the film are taken into consideration. The drag force acting on the particle is analytically calculated and asymptotic expressions of the problem are provided. The relevance of the model is discussed by comparing the calculated "viscoelastic" drag, gamma(vel), to the one predicted by Saffman's theory, gamma(S), for cylindrical inclusions in membranes. Numerical analyses are performed to evaluate the contributions of the surface viscosity and the diffusion coefficient of the layer on the hydrodynamical resistance experienced by the particle. Copyright 2000 Academic Press.  相似文献   

16.
Hydrazine nitrate (HN), an inorganic salt, was first found to have dual effects on inducing obvious viscoelasticity of both cationic and anionic surfactant solutions. It was interesting that the surfactant solutions exhibited characteristic wormlike micelle features with strong viscoelastic properties upon the addition of this inorganic salt. The rheological properties of the surfactant solutions have been measured and discussed. The apparent viscosity of the solutions showed a volcano change with an increase of the HN concentration. Correspondingly, the microstructures of the micelles in the solutions changed with the apparent viscosity. First, wormlike micelles began to form and grew with an increase of the HN concentration. Subsequently, the systems exhibited linear viscoelasticity with characteristics of a Maxwell fluid in the intermediate mass fraction range, which originated from a 3D entangled network of wormlike micelles. Finally, a transition from linear micelles to branched ones probably took place at higher HN contents. In addition, the origin of the dual effects brought by HN addition on inducing viscoelasticity in both cationic and anionic surfactant solutions was investigated.  相似文献   

17.
报道了由gemini表面活性剂乙烷基-α,ω-双十四烷基二甲基溴化铵(14-2-14)产生的高稳定泡沫体系.泡沫塌陷到初始高度一半所对应的时间(t1/2)用来表征泡沫的稳定性.测得14-2-14体系的t1/2高达961min,远大于乙烷基-α,ω-双十二烷基二甲基溴化铵(12-2-12)产生泡沫的t1/2(754min),表明带有一根短联接链和两条长尾链的gemini表面活性剂是高效的泡沫稳定剂.为了揭示界面弹性与泡沫稳定性之间的关联,测量了表面活性剂吸附膜的扩张流变行为.在指定的表面过剩量下,吸附膜的高频极限弹性再一次被发现与泡沫稳定性相关,较大的极限弹性很好地对应更加稳定的泡沫.  相似文献   

18.
Recent studies show strong influence of the dilational surface rheological properties on the stability and dynamics of foam and emulsions. On the other hand, the dilational dynamic surface elasticity proved to be highly sensitive to conformational transitions of macromolecules at fluid–fluid interfaces and can be used to investigate the adsorption mechanism and aggregate formation in the surface layer. The intention of this review consists in the discussion of recent progress in the dialtional surface rheology of solutions of non-ionic homopolymers, block copolymers, polyelectrolytes, polyelectrolyte/surfactant and protein/surfactant complexes.  相似文献   

19.
The effect of binding of an oligomeric cationic fluorooxetane surfactant on the interfacial properties of adsorbed gelatin-fluorooxetane complexes has been studied using dynamic surface tension and dilational rheological measurements. Adsorption kinetics of gelatin-fluorooxetane complexes are reminiscent of a mixed (barrier/diffusion limited) process, while the dilational rheological properties of the interface exhibit a strong dependence on surfactant concentration. At low surfactant concentrations, dilational surface moduli as well as phase angles are relatively insensitive to the presence of the fluorooxetane. However, at the critical aggregation concentration of the polymer-surfactant system, there is a sharp increase in the complex modulus. Further increase in the fluorooxetane concentration does not significantly affect the complex modulus. The phase angle, however, does increase with increasing fluorooxetane concentration due to the transport of bound fluorooxetane from the subsurface to the solution-air interface. These results indicate that, at fluorooxetane concentrations exceeding the critical aggregation concentration, the polymer-surfactant complexes adsorb to form cross-linked multilayers at the solution-air interface.  相似文献   

20.
The surface pressure of monolayers of an insoluble surfactant, didodecyldimethylammonium bromide (DODAB), has been measured onto subphases with different concentrations of poly(styrenesulfonate) (PSS) and at different temperatures. The presence of PSS in the subphase shifts the surface-pressure (Pi) curves to larger areas per DODAB molecule, A, and shifts the surface phase transition to higher Pi's. The presence of PSS chains decreases the surface electric potential; the decrease is higher than expected from the formation of a double layer between the DODAB molecules and the PSS segments. Increasing the temperature shifts the surface-pressure curves to higher areas and also increases the values of Pi of the surface phase transition. The effect of the PSS chains on the Pi versus A curves is contrary to the one induced by the presence of inert electrolytes in the subphase. The behavior is consistent with the existence of a dense layer of PSS segments beneath the DODAB monolayer at low PSS concentrations, c. Two PSS layers exist at higher concentrations, a dense layer immediately below the DODAB and a less-dense layer, below the first one, that protrudes deep into the subphase. The surface-pressure relaxation curves have been found to be bimodal through the whole range of surface pressures and at all the values of polymer concentration studied. These results point out that the adsorption layers behave mainly as elastic bodies, with zero-frequency elasticity, epsilon(omega = 0), which agrees with the equilibrium compressibility modulus. The increase [epsilon(omega = 1) - epsilon(omega = 0)] has been found to be independent of both polymer concentration and molecular weight. The zero-frequency-dilational viscosity, kappa(omega = 0), strongly increases with Pi in the two-dimensional condensed-liquid region. The surface viscosity strongly decreases with increasing frequency; the decreasing rate is higher than the one found for the monolayers of nonionic insoluble polymers. kappa(omega = 0) has also been found to be independent of both polymer concentration and molecular weight. These results seem to indicate that it is the film formed by the DODAB molecules and the first dense polymer layer that determines the surface viscoelastic moduli of this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号