首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
For a > 0 let ψa(x, y) = ΣaΩ(n), the sum taken over all n, 1 ≤ nx such that if p is prime and p|n then a < py. It is shown for u < about (log log xlog log log x) that ψa(x, x1u) ? x(log x)a?1pa(u), where pa(u) solves a delay differential equation much like that for the Dickman function p(u), and the asymptotic behavior of pa(u) is worked out.  相似文献   

2.
For any prime p, the sequence of Bell exponential numbers Bn is shown to have p ? 1 consecutive values congruent to zero (mod p), beginning with Bm, where m ≡ 1 ? (pp ? 1)(p ? 1)2 (mod(pp ? 1)(p ? 1)). This is an improvement over previous results on the maximal strings of zero residues of the Bell numbers. Similar results are obtained for the sequence of generalized Bell numbers An generated by e?(ex ? 1) = Σn = 0 Anxnn!.  相似文献   

3.
Let θ(k, pn) be the least s such that the congruence x1k + ? + xsk ≡ 0 (mod pn) has a nontrivial solution. It is shown that if k is sufficiently large and divisible by p but not by p ? 1, then θ(k, pn) ≤ k12. We also obtain the average order of θ(k), the least s such that the above congruence has a nontrivial solution for every prime p and every positive integer n.  相似文献   

4.
Using results from the theory of B-splines, various inequalities involving the nth order divided differences of a function f with convex nth derivative are proved; notably, f(n)(z)n! ? [x0,…, xn]f ? i = 0n(f(n)(xi)(n + 1)!), where z is the center of mass (1(n + 1))i = 0nxi.  相似文献   

5.
An elementary proof is given of the author's transformation formula for the Lambert series Gp(x) = Σn?1 n?pxn(1?xn) relating Gp(e2πiτ) to Gp(e2πiAτ), where p > 1 is an odd integer and Aτ = (aτ + b)(cτ + d) is a general modular substitution. The method extends Sczech's argument for treating Dedekind's function log η(τ) = πiτ12 ? G1(e2πiτ), and uses Carlitz's formula expressing generalized Dedekind sums in terms of Eulerian functions.  相似文献   

6.
If r, k are positive integers, then Tkr(n) denotes the number of k-tuples of positive integers (x1, x2, …, xk) with 1 ≤ xin and (x1, x2, …, xk)r = 1. An explicit formula for Tkr(n) is derived and it is shown that limn→∞Tkr(n)nk = 1ζ(rk).If S = {p1, p2, …, pa} is a finite set of primes, then 〈S〉 = {p1a1p2a2psas; piS and ai ≥ 0 for all i} and Tkr(S, n) denotes the number of k-tuples (x1, x3, …, xk) with 1 ≤ xin and (x1, x2, …, xk)r ∈ 〈S〉. Asymptotic formulas for Tkr(S, n) are derived and it is shown that limn→∞Tkr(S, n)nk = (p1 … pa)rkζ(rk)(p1rk ? 1) … (psrk ? 1).  相似文献   

7.
8.
Let τ: [0, 1] → [0, 1] possess a unique invariant density f1. Then given any ? > 0, we can find a density function p such that ∥ p ? f1 ∥ < ?, and p is the invariant density of the stochastic difference equation xn + 1 = τ(xn) + W, where W is a random variable. It follows that for all starting points x0 ? [0, 1], limn→∞(1n)i = 0n ? 1 χB(xi) = ∝B p(ξ) dξ.  相似文献   

9.
Let S(k) = Σn=1p?1(np)nk where p is a prime ≡ 3 mod 4 and k is an integer ≥ 3. Then S(k) frequently takes large values of each sign.  相似文献   

10.
Given a set S of positive integers let ZkS(t) denote the number of k-tuples 〈m1, …, mk〉 for which mi ∈ S ? [1, t] and (m1, …, mk) = 1. Also let PkS(n) denote the probability that k integers, chosen at random from S ? [1, n], are relatively prime. It is shown that if P = {p1, …, pr} is a finite set of primes and S = {m : (m, p1pr) = 1}, then ZkS(t) = (td(S))k Πν?P(1 ? 1pk) + O(tk?1) if k ≥ 3 and Z2S(t) = (td(S))2 Πp?P(1 ? 1p2) + O(t log t) where d(S) denotes the natural density of S. From this result it follows immediately that PkS(n) → Πp?P(1 ? 1pk) = (ζ(k))?1 Πp∈P(1 ? 1pk)?1 as n → ∞. This result generalizes an earlier result of the author's where P = ? and S is then the whole set of positive integers. It is also shown that if S = {p1x1prxr : xi = 0, 1, 2,…}, then PkS(n) → 0 as n → ∞.  相似文献   

11.
Let Fn denote the ring of n×n matrices over the finite field F=GF(q) and let A(x)=ANxN+ ?+ A1x+A0?Fn[x]. A function ?:Fn→Fn is called a right polynomial function iff there exists an A(x)?Fn[x] such that ?(B)=ANBN+?+A1B+ A0 for every B?Fn. This paper obtains unique representations for and determines the number of right polynomial functions.  相似文献   

12.
Asymptotic results are obtained for pA(k)(n), the kth difference of the function pA(n) which is the number of partitions of n into integers from A. Under certain restrictions on A it is shown that
PA(k+1)(n)PA(k)(n) = O(n?1/2) (n→ ∫)
thereby verifying for these A a conjecture of Bateman and Erdös.  相似文献   

13.
For an n × n Hermitean matrix A with eigenvalues λ1, …, λn the eigenvalue-distribution is defined by G(x, A) := 1n · number {λi: λi ? x} for all real x. Let An for n = 1, 2, … be an n × n matrix, whose entries aik are for i, k = 1, …, n independent complex random variables on a probability space (Ω, R, p) with the same distribution Fa. Suppose that all moments E | a | k, k = 1, 2, … are finite, Ea=0 and E | a | 2. Let
M(A)=σ=1s θσPσ(A,A1)
with complex numbers θσ and finite products Pσ of factors A and A1 (= Hermitean conjugate) be a function which assigns to each matrix A an Hermitean matrix M(A). The following limit theorem is proved: There exists a distribution function G0(x) = G1x) + G2(x), where G1 is a step function and G2 is absolutely continuous, such that with probability 1 G(x, M(Ann12)) converges to G0(x) as n → ∞ for all continuity points x of G0. The density g of G2 vanishes outside a finite interval. There are only finitely many jumps of G1. Both, G1 and G2, can explicitly be expressed by means of a certain algebraic function f, which is determined by equations, which can easily be derived from the special form of M(A). This result is analogous to Wigner's semicircle theorem for symmetric random matrices (E. P. Wigner, Random matrices in physics, SIAM Review9 (1967), 1–23). The examples ArA1r, Ar + A1r, ArA1r ± A1rAr, r = 1, 2, …, are discussed in more detail. Some inequalities for random matrices are derived. It turns out that with probability 1 the sharpened form
lim supn→∞i=1ni(n)|2?6An62? 0.8228…
of Schur's inequality for the eigenvalues λi(n) of An holds. Consequently random matrices do not tend to be normal matrices for large n.  相似文献   

14.
We shall establish for all finite fields GF(pn) the following result of Chowla: given a positive integer m greater than one and the finite field GF(p), p a prime, such that xm = ?1 is solvable in GF(p), then there exists an absolute positive constant c, c ≤ 10ln 2, such that for each set of s nonzero elements ai of GF(p), a1x1m + ? + asxsm has a non-trivial zero in GF(p) if sc ln m.  相似文献   

15.
Let (X, A) be a measurable space, Θ ? R an open interval and PΩA, Ω ? Θ, a family of probability measures fulfilling certain regularity conditions. Let Ωn be the maximum likelihood estimate for the sample size n. Let λ be a prior distribution on Θ and let Rn,x be the posterior distribution for the sample size n given x ? Xn. L: Θ × Θ → R denotes a loss function fulfilling certain regularity conditions and Tn denotes the Bayes estimate relative to λ and L for the sample size n. It is proved that for every compact K ? Θ there exists cK ≥ 0 such that
suptheta;∈KPtheta;nh{x∈Xn∥ Tn(x) ? ?nx|? cK(log n)n?} = o(n?12).
This theorem improves results of Bickel and Yahav [3], and Ibragimov and Has'minskii [4], as far as the speed of convergence is concerned.  相似文献   

16.
It is proved that Wigner's semicircle law for the distribution of eigenvalues of random matrices, which is important in the statistical theory of energy levels of heavy nuclei, possesses the following completely deterministic version. Let An=(aij), 1?i, ?n, be the nth section of an infinite Hermitian matrix, {λ(n)}1?k?n its eigenvalues, and {uk(n)}1?k?n the corresponding (orthonormalized column) eigenvectors. Let v1n=(an1,an2,?,an,n?1), put
Xn(t)=[n(n-1)]-12k=1[(n-1)t]|vn1uf(n-1)|2,0?t?1
(bookeeping function for the length of the projections of the new row v1n of An onto the eigenvectors of the preceding matrix An?1), and let finally
Fn(x)=n-1(number of λk(n)?xn,1?k?n)
(empirical distribution function of the eigenvalues of Ann. Suppose (i) limnannn=0, (ii) limnXn(t)=Ct(0<C<∞,0?t?1). Then
Fn?W(·,C)(n→∞)
,where W is absolutely continuous with (semicircle) density
w(x,C)=(2Cπ)-1(4C-x212for|x|?2C0for|x|?2C
  相似文献   

17.
Letting G(n) denote the number of nonisomorphic groups of order n, it is shown that for square-free n, G(n) ≤ ?(n) and G(n) ≤ (log n)c on a set of positive density. Letting Fk(x) denote the number of nx for which G(n) = k, it is shown that F2(x) = O(x(log4x)(log3x)2), where logrx denotes the r-fold iterated logarithm.  相似文献   

18.
Presented in this report are two further applications of very elementary formulae of approximate differentiation. The first is a new derivation in a somewhat sharper form of the following theorem of V. M. Olovyani?nikov: LetNn (n ? 2) be the class of functionsg(x) such thatg(x), g′(x),…, g(n)(x) are ? 0, bounded, and nondecreasing on the half-line ?∞ < x ? 0. A special element ofNnis
g1(x) = 0 if ?∞ < x < ?1, g1(x) = (1 + x)nif ?1 ? x ? 0
. Ifg(x) ∈ Nnis such that
g(0) ? g1(0) = 1, g(n)(0) ? g1(n)(0) = n!
, then
g(v)(0) ? g1(v)(0)
for
1v = 1,…, n ? 1
. Moreover, if we have equality in (1) for some value of v, then we have there equality for all v, and this happens only if g(x) = g1(x) in (?∞, 0].The second application gives sufficient conditions for the differentiability of asymptotic expansions (Theorem 4).  相似文献   

19.
Let νp denote a totally positive integer of an algebraic number field K such that νp is a least quadratic non-residue modulo a prime ideal p of K, least in the sense that N(νp) is minimal. Then the following result is shown: For x ≥ 2 and ε > 0,
|p;Np?xandN(vp)>Npε|=Oε(log log 3x).
  相似文献   

20.
Let Kn= {x ? Rn: (x12 + · +x2n?1)12 ? xn} be the n-dimensional ice cream cone, and let Γ(Kn) be the cone of all matrices in Rnn mapping Kn into itself. We determine the structure of Γ(Kn), and in particular characterize the extreme matrices in Γ(Kn).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号