首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two commercial nanofiltration (NF) membranes, viz., Desal-HL and NF 700 MWCO were investigated experimentally using neutral and charged solutes, viz., glucose, sodium chloride and magnesium chloride. Effect of pH was studied for sodium chloride rejection and isoelectric point of the membrane was deduced. Experimental results were analyzed using Donnan steric pore and dielectric exclusion models. Dielectric exclusion arises due to the difference in dielectric constant between the bulk and the nano-pore. Born dielectric effect was used as dielectric exclusion phenomena in the present investigation. Stokes–Einstein, Born effective and Pauling radii were used for theoretical simulation, which accurately predicted different charge densities. Empirical correlations were proposed between charge density, concentration and pH for each radius. Charge density decreased drastically when dielectric exclusion term was included in the theoretical model, which showed the real physical characteristics of the membranes employed. Charge density and radius of pore was found to be an important surface parameter in predicting the separation effects in NF membranes.  相似文献   

2.
The free energies of ion equilibrium partition between an aqueous KCl solution and nanofiltration (NF) membranes were investigated on the basis of the relationship of the transmembrane electrical potential (TMEP) and rejection. The measurements of TMEP and rejection were performed for Filmtec NF membranes in KCl solutions over a wide range of salt concentrations (1-60 mol·m(-3)) and pH values (3-10) at the feed side, with pressure differences in the range 0.1-0.6 MPa. The reflection coefficient and transport number, which were used to obtain the distribution coefficients on basis of irreversible thermodynamics, were fitted by the two-layer model with consideration of the activity coefficient. Evidence for dielectric exclusion under the experimental conditions was obtained by analyzing the rejection of KCl at the isoelectric point. The free energies were calculated, and the contribution of the electrostatic effect, dielectric exclusion, steric hindrance, and activity coefficient on the ion partitioning is elucidated. It is clearly demonstrated that the dielectric exclusion plays a central role.  相似文献   

3.
Influence of steric, electric, and dielectric effects on membrane potential   总被引:1,自引:0,他引:1  
The membrane potential arising through nanofiltration membranes separating two aqueous solutions of the same electrolyte at identical hydrostatic pressures but different concentrations is investigated within the scope of the steric, electric, and dielectric exclusion model. The influence of the ion size and the so-called dielectric exclusion on the membrane potential arising through both neutral and electrically charged membranes is investigated. Dielectric phenomena have no influence on the membrane potential through neutral membranes, unlike ion size effects which increase the membrane potential value. For charged membranes, both steric and dielectric effects increase the membrane potential at a given concentration but the diffusion potential (that is the high-concentration limit of the membrane potential) is affected only by steric effects. It is therefore proposed that membrane potential measurements carried out at high salt concentrations could be used to determine the mean pore size of nanofiltration membranes. In practical cases, the membrane volume charge density and the dielectric constant inside pores depend on the physicochemical properties of both the membrane and the surrounding solutions (pH, concentration, and chemical nature of ions). It is shown that the Donnan and dielectric exclusions affect the membrane potential of charged membranes similarly; namely, a higher salt concentration is needed to screen the membrane fixed charge. The membrane volume charge density and the pore dielectric constant cannot then be determined unambiguously by means of membrane potential experiments, and additional independent measurements are in need. It is suggested to carry out rejection rate measurements (together with membrane potential measurements).  相似文献   

4.
Tangential streaming potential (TSP) measurements have been carried out so as to assess the electrokinetic properties of the active layer of organic nanofiltration (NF) membranes. Due to the porous structure of NF membranes, cares must be taken to convert the experimental data into zeta potential. Indeed, an assumption that is implicitly made in Smoluchowski's theory (or in related approaches accounting for the surface conduction phenomenon) is that both streaming and conduction currents involved in the streaming potential process flow through an identical path. Such an assumption does not hold with porous membranes since the conduction current is expected to flow wherever the electric conductivity differs from zero. Consequently, a non-negligible share of the conduction current is likely to flow through the membrane body filled with the electrolyte solution. This phenomenon has been taken into account by carrying out a series of TSP measurements at various channel heights. Experiments have been conducted with various electrolyte solutions. The inferred zeta potentials have been further converted into membrane volume charge densities which have been used to predict the membrane performances in terms of rejection rates. The conventional NF theory, i.e. based on a steric/Donnan exclusion mechanism, has been found to be unable to describe the experimental rejection rates. Using the volume charge density of the membrane as an adjustable parameter, it has been shown that the conventional theory even predicts the opposite sign for the membrane charge. On the other hand, the experimental rejection rates have been well described by including dielectric effects in the exclusion mechanism. In this case, a noticeable lowering of the effective dielectric constant of the electrolyte solution inside pores has been predicted (with respect to the bulk value).  相似文献   

5.
The impacts of membrane degradation due to chlorine attack on the rejection of pharmaceutically active compounds (PhACs) by nanofiltration and reverse osmosis membranes were investigated in this study. Membrane degradation was simulated by soaking the membranes in a sodium hypochlorite solution of various concentrations over 18 h. Changes in membrane surface properties were characterised by contact angle measurement, atomic force microscopy analysis, and streaming potential measurement. The impacts of hypochlorite exposure to the membrane separation processes were ascertained by comparing the rejection of PhACs by virgin and chlorine-exposed membranes. Overall, the reverse osmosis BW30 membrane and the tight nanofiltration NF90 membrane were much more resilient to chlorine exposure than the larger pore size TFC-SR2 and NF270 nanofiltration membranes. In fact, rejection of all three PhACs selected in this study by the BW30 remained largely unchanged after hypochlorite exposure and further characterisation did not reveal any evidence of compromised separation capability. In contrast, the effects of chlorine exposure to the two loose nanofiltration membranes were quite profound. While chlorine exposure generally resulted in reduced rejection of PhACs, a small increase in rejection was observed when a more dilute hypochlorite solution was used. Changes in the membrane surface morphology as well as observed rejection of inorganic salts and PhACs were found to be consistent with mechanisms of chlorine oxidation of polyamide membranes reported in the literature. Chlorine oxidation consistently resulted in a more negative zeta potential of all four membranes investigated in this study. Conformational alterations of the membrane polyamide active skin layer were also evident as reflected by changes in surface roughness before and after chlorine exposure. Such alterations can either loosen or tighten the effective membrane pore size, leading to either a decrease or an increase in rejection. Both of these phenomena were observed in this study, although the decrease in the rejection of PhACs was overwhelming from exposure to highly concentrated hypochlorite solution.  相似文献   

6.
A computer program, NanoFiltran, was developed to simulate the mass transport of multi-ionic aqueous solutions in charged nanofiltration (NF) membranes, based on the Donnan steric partitioning pore and dielectric exclusion (DSPM&DE) model, with incorporation of the non-ideality of electrolyte solutions and concentration polarization effects in the membrane/feed-solution interface. With this computer program, the extended Nernst–Planck (ENP) equations are discretized inside the membrane, using the finite-difference scheme. The discretized ENP equations together with the other model equations are linearized in order to obtain a system of equations that are solved simultaneously. The linearized system of equations is based on an initial guess for the electrical potential and ions concentrations profiles, which are updated iteratively. A robust method of under-relaxation of the electrical potential and ions concentrations ensures that the convergence is achieved even for NF systems that exhibit a very stiff numerical behaviour.  相似文献   

7.
A side-by-side comparison of the performance of McMaster pore-filled (MacPF) and commercial nanofiltration (NF) membranes is presented here. The single-salt and multi-component performance of these membranes is studied using experimental data and using a mathematical model. The pseudo two-dimensional model is based on the extended Nernst–Planck equation, a modified Poisson–Boltzmann equation, and hydrodynamic calculations. The model includes four structural properties of the membrane: pore radius, pure water permeability, surface charge density and the ratio of effective membrane thickness to water content. The analysis demonstrates that the rejection and transport mechanisms are the same in the commercial and MacPF membranes with different contributions from each type of mechanism (convection, diffusion and electromigration). Solute rejection in NF membranes is determined primarily by a combination of steric and electrostatic effects. The selectivity of MacPF membranes is primarily determined by electrostatic effects with a significantly smaller contribution of steric effects compared to commercial membranes. Hence, these membranes have the ability to reject ions while remaining highly permeable to low molecular weight organics. Additionally, a new theoretical membrane design approach is presented. This design procedure potentially offers the optimization of NF membrane performance by tailoring the membrane structure and operating variables to the specific process, simultaneously. The procedure is validated at the laboratory scale.  相似文献   

8.
The effects of surface water pretreatment on membrane fouling and the influence of these different fouling types on the rejection of 21 neutral, positively and negatively charged pharmaceuticals were investigated for two nanofiltration membranes. Untreated surface water was compared with surface water, pretreated with a fluidized anionic ion exchange and surface water, pretreated with ultrafiltration. Fouling the nanofiltration membranes with anionic ion exchange resin effluent, resulted in the deposition of a mainly colloidal fouling layer, with a rough morphology. Fouling the nanofiltration membranes with ultrafiltration permeate, resulted in the deposition of a smooth fouling layer, containing mainly natural organic matter. The fouling layer on the nanofiltration membranes, caused by the filtration of untreated surface water, was a combination of both colloids and natural organic matter.Rejection of pharmaceuticals varied the most for the membranes, fouled with the anionic ion exchange effluent, and variations in rejection were caused by a combination of cake-enhanced concentration polarisation and electrostatic (charge) effects. For the membranes, fouled with the other two water types, variations in rejection were smaller and were caused by a combination of steric and electrostatic effects.Changes in membrane surface hydrophobicity due to fouling, changed the extent of partitioning and thus the rejection of hydrophobic, as well as hydrophilic pharmaceuticals.  相似文献   

9.
Graphene is an atomic layer thick carbon-based material with unique two-dimensional architecture and extraordinary physiochemical, optical, electrical, and mechanical properties. Graphene and its derivatives show significant promises for the development of nanoporous ultrathin filtration membranes capable of molecular separation properties. Graphene-based nanofiltration membranes featuring distinct laminar structures can offer various novel mass-transport phenomena for purifying water, energy storage and separation, gas separation, and proton conductors. The latest developments in water purification techniques through graphene-based membranes including engineering, design, and fabrication of diverse graphene, graphene-oxide, and graphene-composite membranes are provided here in relation to their application paradigm for purifying water. The critical views on pollutant removal mechanisms for water purification along with optimization measures are specially highlighted. In addition, the challenges, shortcomings, and future prospects are pointed out. The green and large-scale synthesis technology of graphene coupling with advanced membrane fabrication techniques can promote these state-of-the-art nanofiltration membranes for a wide range of applications.  相似文献   

10.
付升  于养信  王晓琳 《化学学报》2007,65(10):923-929
假定纳滤膜具有狭缝状孔, 使用纯水透过系数、膜孔径及膜表面电势来表征纳滤膜的分离特征, 用流体力学半径和无限稀释扩散系数表征了离子特性. 采用扩展Nernst-Planck方程、Donnan平衡模型和Poisson-Boltzmann理论描述了混合电解质溶液中离子在膜孔内的传递现象, 计算了三种商用纳滤膜(ESNA1-LF, ESNA1和LES90)对同阴离子、同阳离子和含四种离子的混合电解质体系中离子的截留率, 并与实验数据进行了比较. 计算结果表明, 电解质溶液中离子在纳滤膜孔内传递的主要机理是离子的扩散和电迁移, 纳滤膜对混合电解质溶液中离子的分离效果主要由空间位阻和静电效应决定. 该模型在低浓度时对含一价离子的混合电解质溶液通过纳滤膜的截留率计算结果比较准确, 但对高浓度或含高价离子的混合电解质溶液则偏差较大.  相似文献   

11.
Transport of four metallic salts (CuCl2, ZnCl2, NiCl2 and CaCl2) through a polyamide nanofiltration (NF) membrane has been investigated experimentally from rejection rate and tangential streaming potential measurements. Rejection rates have been further analyzed by means of the steric, electric and dielectric exclusion (SEDE) homogeneous model with the effective dielectric constant of the solution inside pores as the single adjustable parameter.  相似文献   

12.
Removal of organic contaminants by RO and NF membranes   总被引:4,自引:0,他引:4  
Rejection characteristics of organic and inorganic compounds were examined for six reverse osmosis (RO) membranes and two nanofiltration (NF) membranes that are commercially available. A batch stirred-cell was employed to determine the membrane flux and the solute rejection for solutions at various concentrations and different pH conditions. The results show that for ionic solutes the degree of separation is influenced mainly by electrostatic exclusion, while for organic solutes the removal depends mainly upon the solute radius and molecular structure. In order to provide a better understanding of rejection mechanisms for the RO and NF membranes, the ratio of solute radius (r(i,s)) to effective membrane pore radius (r(p)) was employed to compare rejections. An empirical relation for the dependence of the rejection of organic compounds on the ratio r(i,s)/r(p) is presented. The rejection for organic compounds is over 75% when r(i,s)/r(p) is greater than 0.8. In addition, the rejection of organic compounds is examined using the extended Nernst-Planck equation coupled with a steric hindrance model. The transport of organic solutes is controlled mainly by diffusion for the compounds that have a high r(i,s)/r(p) ratio, while convection is dominant for compounds that have a small r(i,s)/r(p) ratio.  相似文献   

13.
PES中空纤维复合纳滤膜的制备   总被引:2,自引:2,他引:0  
采用界面聚合法制备聚醚砜(PES)中空纤维复合纳滤(NF)膜,讨论了制备条件对PES中空纤维复合NF膜性能的影响。实验结果表明,聚合反应时间、均苯三甲酰氯浓度、哌嗪浓度和酸吸收剂三乙胺浓度对复合NF膜性能有显著影响,同时二次反应能够提高复合NF膜的截留率,对2g/L的Na2SO4截留率可达到99.2%。  相似文献   

14.
Colloidal interactions and fouling of NF and RO membranes: a review   总被引:3,自引:0,他引:3  
Colloids are fine particles whose characteristic size falls within the rough size range of 1-1000 nm. In pressure-driven membrane systems, these fine particles have a strong tendency to foul the membranes, causing a significant loss in water permeability and often a deteriorated product water quality. There have been a large number of systematic studies on colloidal fouling of reverse osmosis (RO) and nanofiltration (NF) membranes in the last three decades, and the understanding of colloidal fouling has been significantly advanced. The current paper reviews the mechanisms and factors controlling colloidal fouling of both RO and NF membranes. Major colloidal foulants (including both rigid inorganic colloids and organic macromolecules) and their properties are summarized. The deposition of such colloidal particles on an RO or NF membrane forms a cake layer, which can adversely affect the membrane flux due to 1) the cake layer hydraulic resistance and/or 2) the cake-enhanced osmotic pressure. The effects of feedwater compositions, membrane properties, and hydrodynamic conditions are discussed in detail for inorganic colloids, natural organic matter, polysaccharides, and proteins. In general, these effects can be readily explained by considering the mass transfer near the membrane surface and the colloid-membrane (or colloid-colloid) interaction. The critical flux and limiting flux concepts, originally developed for colloidal fouling of porous membranes, are also applicable to RO and NF membranes. For small colloids (diameter?100 nm), the limiting flux can result from two different mechanisms: 1) the diffusion-solubility (gel formation) controlled mechanism and 2) the surface interaction controlled mechanism. The former mechanism probably dominates for concentrated solutions, while the latter mechanism may be more important for dilute solutions. Future research needs on RO and NF colloidal fouling are also identified in the current paper.  相似文献   

15.
The transmembrane electrical potential (TMEP) across two commercial nanofiltration membranes (ESNA1-K and Filmtec NF) was investigated in KCl and MgCl(2) solutions. TMEP was measured in a wide range of salt concentrations (1-60 mol·m(-3)) and pH values (3-10) at the feed side, with pressure differences in the range of 0.1-0.6 MPa. A two-layer model based on the Nernst-Planck equation was proposed to describe the relation between TMEP and permeation flux. From the pattern of these curves, the information of membrane structure could be deduced. In the concentration range investigated, TMEP in KCl solutions was always positive and decreased as the salt concentration increased. The contribution of the membrane potential to the TMEP decreased. TMEP was greatly affected by the feed pH. When the feed pH increased, the mobility of cations increased, which indicated that the charges of NF membranes were more negative. The zero point of TMEP and the minimum of rejection in KCl solution were consistent and occurred at the isoelectric point of NF membranes, while in MgCl(2) solution the zero point of TMEP located at a higher pH value. The TMEP in MgCl(2) solutions changed its sign at a given concentration, and by calculating the transport number the location of the minimum rejection could be determined.  相似文献   

16.
Novel nanofiltration (NF) membrane was developed from hydroxyl-ended hyperbranched polyester (HPE) and trimesoyl chloride (TMC) by in situ interfacial polymerization process using ultrafiltration polysulfone membrane as porous support. Fourier transform infrared spectroscopy (FTIR-ATR), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle (CA) measurements were employed to characterize the resulting membranes. The results indicated that the crosslinked hyperbranched polyester produced a uniform, ultra-thin active layer atop polysulfone (PSf) membrane support. FTIR-ATR spectra indicated that TMC reacted sufficiently with HPE. Water permeability and salts rejection of the prepared NF membrane were measured under low trans-membrane pressures. The resulting NF membranes exhibited significantly enhanced water permeability while maintaining high rejection of salts. The salts rejection increase was accompanied with the flux decrease when TMC dosage was increased. The flux and rejection of NF 1 for Na2SO4 (1 g/L) reached to 79.1 l/m2 h and 85.4% under 0.3 MPa. The results encourage further exploration of NF membrane preparation using hyperbranched polymers (HBPs) as the selective ultra-thin layer.  相似文献   

17.
Wastewaters and by-products generated in the winemaking process are important and inexpensive sources of value-added compounds that can be potentially reused for the development of new products of commercial interest (i.e., functional foods). This research was undertaken in order to evaluate the potential of nanofiltration (NF) membranes in the recovery of anthocyanins and monosaccharides from a clarified Carménère grape marc obtained through a combination of ultrasound-assisted extraction and microfiltration. Three different flat-sheet nanofiltration (NF) membranes, covering the range of molecular weight cut-off (MWCO) from 150 to 800 Da, were evaluated for their productivity as well as for their rejection towards anthocyanins (malvidin-3-O-glucoside, malvidin 3-(acetyl)-glucoside, and malvidin 3-(coumaroyl)-glucoside) and sugars (glucose and fructose) in selected operating conditions. The selected membranes showed differences in their performance in terms of permeate flux and rejection of target compounds. The NFX membrane, with the lowest MWCO (150–300 Da), showed a lower flux decay in comparison to the other investigated membranes. All the membranes showed rejection higher than 99.42% for the quantified anthocyanins. Regarding sugars rejection, the NFX membrane showed the highest rejection for glucose and fructose (100 and 92.60%, respectively), whereas the NFW membrane (MWCO 300–500 Da) was the one with the lowest rejection for these compounds (80.57 and 71.62%, respectively). As a general trend, the tested membranes did not show a preferential rejection of anthocyanins over sugars. Therefore, all tested membranes were suitable for concentration purposes.  相似文献   

18.
Electrospun polyacrylonitrile (PAN) nanofibrous scaffold was used as a mid-layer support in a new kind of high flux thin film nanofibrous composite (TFNC) membranes for nanofiltration (NF) applications. The top barrier layer was produced by interfacial polymerization of polyamides containing different ratios of piperazine and bipiperidine. The filtration performance (i.e., permeate flux and rejection) of TFNC membranes based on electrospun PAN nanofibrous scaffold was compared with those of conventional thin film composite (TFC) membranes consisting of (1) a commercial PAN ultrafiltration (UF) support with the same barrier layer coating and (2) two kinds of commercial NF membranes (i.e., NF90 and NF270 from Dow Filmtec). The nanofiltration test was carried out by using a divalent salt solution (MgSO4, 2000 ppm) and a cross-flow filtration cell. The results indicated that TFNC membranes exhibited over 2.4 times more permeate flux than TFC membranes with the same chemical compositions, while maintaining the same rejection rate (ca. 98%). In addition, the permeate flux of hand-cast TFNC membranes was about 38% higher than commercial NF270 membrane with the similar rejection rate.  相似文献   

19.
Fouling of reverse osmosis (RO) and nanofiltration (NF) membranes by humic acid, a recalcitrant natural organic matter (NOM), was systematically investigated. The membrane flux performance depended on both hydrodynamic conditions (flux and cross-flow velocity) and solution composition (humic acid concentration, pH, ionic strength, and calcium concentration), and was largely independent of virgin membrane properties. While increasing humic acid concentration and ionic strength, and lowering cross-flow velocity affected flux performance moderately, severe flux reduction occurred at high initial flux, low pH, and high calcium concentration. At a calcium concentration of 1 mM, all the membranes exhibited an identical stable flux, independent of their respective intrinsic membrane permeabilities. The effect of solution composition was more significant at higher fluxes. Improved salt rejection was observed as a result of humic acid fouling, which was likely due to Donnan exclusion by humic material close to membrane surfaces. Greater rejection improvement was observed for membranes with rougher surfaces.  相似文献   

20.
Polyamide/polyacrylonitrile thin‐film‐composite (TFC) nanofiltration (NF) membranes for the separation of oleic acid dissolved in organic solvents (methanol and acetone) were interfacially prepared by the reaction of trimesoyl chloride in an organic phase with an aqueous phase containing piperazine and m‐phenylene diamine. The interfacial reaction was confirmed by an investigation of the attenuated total reflection infrared spectrum. The surface morphology of the polyamide TFC membranes was examined with scanning electron microscopy. The hydrophilic properties of the membrane surfaces were conjectured on the basis of the ζ potential and contact angle. The effects of the monomer concentrations of the monomer blends (aliphatic and aromatic diamines) and drying times on various aspects of membrane performance, such as the solvents (water, alcohols, ketones, and hexane), permeation rates, and organic solute [poly(ethylene glycol) 200 and oleic acid] rejection rates, were investigated. All the membranes showed good solvent resistance. The polar solvent flux for water and methanol was higher than that for a nonpolar solvent (hexane). The membranes gave good rejection rates of oleic acid dissolved in methanol and acetone. The NF membranes were compared with various commercial membranes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2151–2163, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号