首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
An isoenzyme of phenol sulphotransferase, designated P-STG, was purified 157-fold from male rat liver cytosol by diethylaminoethyl-cellulose (DEAE-cellulose) and agarose-hexane-adenosine-3',5'-bisphosphate affinity chromatography. The P-STG fraction obtained after DEAE-cellulose chromatography rapidly lost its activity during storage at 4 degrees C, however, the activity was recovered by the addition of 1.6 M guanidine hydrochloride (Gndn HCl) followed by dialysis. Gndn HCl also substantially improved the yield of P-STG in a subsequent purification step using affinity chromatography, while the specific activity of the purified P-STG was not changed by Gndn HCl treatment. It is possible that the Gndn HCl treatment caused P-STG recovery from an inactivated to an active form rather than reactivating it for increased activity. Purified P-STG is a homodimer with a native molecular mass of 67 kDa; the subunit molecular mass is 35 kDa. Immunoblot analysis carried out with antibodies raised against the purified enzyme indicated that male rat liver contains a higher level of the enzyme than female rat liver. This enzyme is also expressed in the kidney and the stomach. P-STG reaches maximum activity when 1-naphthol, 2-naphthol and 4-nitrophenol are used as substrates at pH 5.5. Using dopamine as a substrate the pH optimum is about 9.0. P-STG activity is markedly inhibited by the addition of sodium chloride to the reaction mixture.  相似文献   

2.
Human serum paraoxonase 1 (PON1; EC 3.1.8.1) is a high-density lipoprotein associated, calcium-dependent enzyme that hydrolyses aromatic esters, organophosphates and lactones and can protect the low-density lipoprotein against oxidation. In this study, in vitro inhibition effect of some dihydroxy coumarin compounds namely 6,7-dihydroxy-3-(2-methylphenyl)-2H-chromen-2-one (A), 6,7-dihydroxy-3-(3-methylphenyl)-2H-chromen-2-one (B) and 6,7-dihydroxy-3-(4-methylphenyl)-2H-chromen-2-one (C) on purified PON1 were investigated by using paraoxon as a substrate. PON1 was purified using two-step procedures, namely ammonium sulphate precipitation and Sepharose-4B-l-tyrosine-1-naphthylamine hydrophobic interaction chromatography. The purified enzyme had a specific activity of 11.76?U/mg. The dihydroxy coumarin derivatives of A and B compounds inhibited PON1 enzyme activity in a noncompetitive inhibition manner with K i of 0.0080?±?0.256 and 0.0003?±?0.018?mM values, respectively. C compound exerted an uncompetitive inhibition of PON1 enzyme activity with K i of 0.0010?±?0.173?mM. Moreover, dihydroxy coumarin derivatives of A, B and C compounds were effective inhibitors on purified human serum PON1 activity with IC50 of 0.012, 0.022 and 0.003?mM values, respectively. IC50 value of unsubstituted 6,7 dihydroxy coumarin was found as 0.178?mM. The present study has demonstrated that PON1 activity is very highly sensitive to studied coumarin derivatives.  相似文献   

3.
A thermostable D-hydantoinase of thermophilicBacillus stearothermophilus SD-1 was purified to homogeneity using an immuno-affinity chromatography. The affinity chromatography that employed polyclonal antibody immobilized on Sepharose 4B was simple to operate and gave a purification yield of 60% of enzyme activity. Molecular mass of the enzyme was determined to be about 133.9 kDa by gel filtration chromatography and the molecular mass of the subunit was 54 kDa on SDS-PAGE. Mass spectrometric analyses were also performed for the determination of the molecular mass of the native enzyme and its subunit. The apparent molecular masses were 51.1 and 102.1 kDa for the subunit and native enzyme, respectively. Based on the molecular masses determined by these two methods, it is suggested that the D-hydantoinase exists as a dimeric conformation in the cell. Isoelectric pH of the enzyme was observed to be 4.47. It was found that the enzyme requires one manganese ion per molecule of enzyme for the activity. The optimal pH and temperature for the catalytic activity were about 8.0 and 65‡C., respectively. The half-life of the enzyme was estimated to be 30 min at 80‡C., confirming that the enzyme purified is one of the most thermostable D-hydantoinase reported so far. Kinetic constants of the enzyme for different substrates were also determined.  相似文献   

4.
颜世强  梁晓梅  张建军  王道全 《有机化学》2009,29(12):2005-2016
以阿维菌素B1a为原料经选择性C-5羟基保护、氧化合成5-O-烯丙氧羰基-5-氧代-5-脱氧阿维菌素B1a (3), 然后与N-取代氨基硫脲偶联, 缩合产物经MnO2氧化关环、脱保护得到10个未见文献报道的4-(1-硫杂-2-亚氨基- 3,4-二氮杂-1,4-亚丁基)-4-脱氧阿维菌素B1a (7a~7j). 目标化合物结构经1H NMR, 13C NMR和MS确证.  相似文献   

5.
The inclusion bodies of organophosphorous hydrolase hexahistidine-tagged at the N-terminus of the protein molecule were isolated from E. coli DH5a cells and purified. The optimum conditions for the solubilization of the inclusion bodies are the following: 6M urea in a phosphate-salt buffer with pH 7.6, 37°C, 2 h. The refolding of the enzyme from solutions of the solubilized inclusion bodies was carried out using metal-chelating affinity chromatography. The activation of the refolded enzyme was studied. The highest catalytic activity of the enzyme is observed after 24-h-long incubation at 4°C in a solution containing 0.05 M CO 3 2? and 10?5 M Co2+.  相似文献   

6.
A non-haemolytic phospholipase C (EC 3.1.4.3) was purified from the culture medium of Achromobacter xylosoxidans with a 5% yield and a purification factor of 330. A combination of ultrafiltration, acetone precipitation and two subsequent affinity chromatographic steps was used. The affinity chromatography is a new application of 2-(4-aminophenylsulphonyl)ethyl-cellulose, a sorbent that has previously been used for the purification of phospholipase C from Bacillus cereus. The purified enzyme gave four distinct bands on polyacrylamide gel electrophoresis, and each band was catalytically active. Under our experimental conditions, the phospholipids examined were hydrolysed in the following order: phosphatidylcholine, phosphatidylethanolamine, sphingomyelin. Neither the synthetic substrate p-nitrophenylphosphorylcholine nor phosphatidylinositol was hydrolysed under different experimental conditions. For maximal hydrolytic activity toward phosphatidylcholine, the enzyme required Triton X-100 and Ca2+ ions. EDTA was inhibitory, but the enzyme activity was almost completely restored by Zn2+. The molecular mass of the phospholipase C, estimated by gel permeation, was 34,000 daltons.  相似文献   

7.
A fast protein liquid chromatographic (FPLC) system with pre-packed and laboratory-packed columns was used for the analytical and preparative isolation of marmoset monkey cytochrome P-450 (P450) and NADPH-P450-reductase. Chromatographic separations also allowed the recovery of cytochrome b5, NADH-b5-reductase and epoxide hydratase. Cholate-solubilized liver microsomes from phenobarbital-induced marmosets were crudely purified on 8-aminooctyl-Sepharose or 6-aminohexyl-Sepharose and then fractionated into several isoenzyme groups using hydroxyapatite. Further purification on Mono S or CM-Sepharose and finally on phenyl-Superose, phenyl-Sepharose or octyl-Sepharose yielded a P450 fraction which was apparently homogeneous as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis in the automated Phast system using silver staining. Removal of excess of non-ionic detergent was effected by hydroxyapatite columns, and this was compared with other methods. For the isolation of P450 isoenzymes from untreated marmosets, Mono Q columns were employed and yielded at least two highly purified forms. NADPH-P450-reductase was recovered from the 8-aminooctyl-Sepharose column or crudely fractionated on DEAE-Sepharose Fast Flow. Subsequent purification via 2',5'-ADP-Sepharose and Superose 12 chromatography resulted in a homogeneous preparation.  相似文献   

8.
The filamentous fungus Sclerotinia sclerotiorum produces beta-glucosidases in liquid culture with a variety of carbon sources, including cellulose (filter paper), xylan, barley straw, oat meal, and xylose. Analysis by native polyacrylamide gel electrophoresis (PAGE) followed by an activity staining with the specific chromogenic substrate, 5-bromo 4-chloro 3-indolyl beta-1,4 glucoside (X-glu) showed that two extracellular beta-glucosidases, designated as beta-glu1 and beta-glu2, were in the filter paper culture filtrate. Only one enzyme designated as beta-glu x was revealed by the same method in the xylose culture filtrate. Beta-glu1 and beta-glu2 were purified to homogeneity. The purification procedure consist of a common step of anion-exchange chromatography on DEAE-Sepharose CL6B, both high-performance liquid chromatography (HPLC) anion-exchange and gel filtration columns for beta-glu1 and only HPLC gel filtration for beta-glu2. Beta-glu1 has a molecular mass of 196 kDa and 96.5 kDa, as estimated by gel filtration and sodium dodecyl sulfate (SDS)-PAGE, respectively, suggesting that the native enzyme may consist of two identical subunits. The same analysis showed that beta-glu2 is a monomeric protein with an apparent molecular mass of about 76.5 kDa. Beta-glu1 and beta-glu2 hydrolyses PNPGlc and cellobiose, with apparent Km values respectively for PNPGlc and cellobiose of 0.1 and 1.9 mM for beta-glu1 and 2.8 and 8 mM for beta-glu2. Both enzymes exhibit the same temperature and pH optima for PNPGlc hydrolysis (60 degrees C and pH 5.0). beta-glu1 was stable over a pH range of 3-8 and kept 50% of its activity after 30 min of heating at 60 degrees C without substrate. It was further characterized by studying the effect of some cations and various reagents on its activity.  相似文献   

9.
Extracellular tyrosinase from Auricularia auricula RF201 was purified in a three-step procedure involving ammonium sulfate precipitation, Sephadex G-100, and DEAE-Sepharose column chromatography. The partially purified enzyme showed a single protein band of 12.6 kDa on SDS-PAGE. The optimum pH for tyrosinase activity was 7, and the enzyme was stable between pH 6 and 9. Tyrosinase has optimal activity at 40 °C and retained most of its activity between 4 and 50 °C. A. auricula tyrosinase could oxidize l-tyrosine, l-DOPA, catechol, and caffeic acid and displayed dark brown or peach color. However, the enzyme was unable to catalyze l-phenylalanine and ferulic acid. In comparison with other substrates, l-tyrosine displayed the highest affinity (K m of 0.11 mM) and the maximal reaction velocity (V max of 102.58 μmol/min). Tyrosinase activity was reduced in the presence of numerous tested compounds. Particularly SDS, it significantly inhibited enzyme activity. CuSO4 and NaCl showed an activation effect on enzyme activity, with the maximum activation found in the presence of CuSO4.  相似文献   

10.
In vitro evolution methods were used to obtain DNA enzymes that cleave either a 2',5'-phosphodiester following a D-ribonucleotide or a 3',5'-phosphodiester following an L-ribonucleotide. Both enzymes can operate in an intermolecular reaction format with multiple turnover. The DNA enzyme that cleaves a 2',5'-phosphodiester exhibits a k(cat) of approximately 0.01 min(-1) and catalytic efficiency, k(cat)/K(m), of approximately 10(8) M(-1) min(-1). The enzyme that cleaves an L-ribonucleotide is about 10-fold slower and has a catalytic efficiency of approximately 4 x 10(5) M(-1) min(-1). Both enzymes require a divalent metal cation for their activity and have optimal catalytic rate at pH 7-8 and 35-50 degrees C. In a comparison of each enzyme's activity with either its corresponding substrate that contains an unnatural ribonucleotide or a substrate that instead contains a standard ribonucleotide, the 2',5'-phosphodiester-cleaving DNA enzyme exhibited a regioselectivity of 6000-fold, while the L-ribonucleotide-cleaving DNA enzyme exhibited an enantioselectivity of 40-fold. These molecules demonstrate how in vitro evolution can be used to obtain regio- and enantioselective catalysts that exhibit specificities for nonnatural analogues of biological compounds.  相似文献   

11.
The distance and relative orientation of the C5' methyl group of 5'-deoxyadenosine and the substrate radical in vitamin B(12) coenzyme-dependent ethanolamine deaminase from Salmonella typhimurium have been characterized by using X-band two-pulse electron spin-echo envelope modulation (ESEEM) spectroscopy in the disordered solid state. The (S)-2-aminopropanol-generated substrate radical catalytic intermediate was prepared by cryotrapping steady-state mixtures of enzyme in which catalytically exchangeable hydrogen sites in the active site had been labeled by previous turnover on (2)H(4)-ethanolamine. Simulation of the time- and frequency-domain ESEEM requires two types of coupled (2)H. The strongly coupled (2)H has an effective dipole distance (r(eff)) of 2.2 A, and isotropic coupling constant (A(iso)) of -0.35 MHz. The weakly coupled (2)H has r(eff) = 3.8 A and A(iso) = 0 MHz. The best (2)H ESEEM time- and frequency-domain simulations are achieved with a model in which the hyperfine couplings arise from one strongly coupled hydrogen site and two equivalent weakly coupled hydrogen sites located on the C5' methyl group of 5'-deoxyadenosine. This model indicates that the unpaired electron on C1 of the substrate radical and C5' are separated by 3.2 A and are thus at closest contact. The close proximity of C1 and C5' indicates that C5' of the 5'-deoxyadenosyl moiety directly mediates radical migration between cobalt in cobalamin and the substrate/product site over a distance of 5-7 A in the active site of ethanolamine deaminase.  相似文献   

12.
Acinetobacter strain PS12B was isolated from marine sediment and was found to be a good candidate to degrade agar and produce agarase enzyme. The extracellular agarase enzyme from strain PS12B was purified by ammonium sulfate precipitation followed by DEAE-cellulose ion-exchange chromatography. The specific activity of the crude enzyme which was 1.52 U increased to 45.76 U, after two-stage purification, with an enzyme yield of 9.76%. Purified enzyme had a molecular mass of 24 kDa. The optimum pH and temperature for activity of purified agarase were found to be 8.0 and 40 °C, respectively. The Km and Vmax values for agarase were 4.69 mg/ml and 0.5 μmol/min, respectively. Treatment with EDTA reduced the agarase activity by 58% at 5 mM concentration. The enzyme activity was stimulated by the presence of Fe2+, Mn2+, and Ca2+ ions while reducing reagents (β-mercaptoethanol and dithiothreitol, DTT) enhanced its activity by 30–40%. The purified agarase exhibited tolerance to both detergents and organic solvents. Major hydrolysis products of agar were DP4 and also a mixture of longer oligosaccharides DP6 and DP7. The enzyme hydrolysed seaweed (Gracilaria verrucosa) exhibited strong antioxidant activity in vitro. Successful hydrolysis of seaweed indicates the potential use of the enzyme to produce seaweed hydrolysate having health benefits as well as the industrial application like the production of biofuels.  相似文献   

13.
A hyaluronate lyase was obtained by cultivating Arthrobacter globiformis strain A152. The enzyme was purified to homogeneity from the supernatant by ammonium sulfate fractionation, Q Sepharose Fast Flow, and Sephadex G-100 chromatography. The purification resulted in a 32.78-fold increase in hyaluronate lyase activity with specific activity of 297.2 U/mg. The molecular weight of the enzyme determined by SDS-PAGE was approximately 73.7 kDa. Using hyaluronic acid (HA) as a substrate, the maximal reaction rate (Vmax) and the Michaelis–Menten constant (Km) of hyaluronate lyase were found to be 4.76 μmol/min/ml and 0.11 mg/ml, respectively. The optimum pH and temperature values for hyaluronate lyase activity were pH 6.0 and 42 °C, respectively. This enzyme was stable at pH 4–10, 5–7, and 5–7 at 4, 37, and 42 °C, respectively. Investigation about temperature effects on hyaluronate lyase displayed that it was stable at 30–37 °C and also showed high activity at 37 °C. The enzymatic activity was enhanced by Ca2+ and was strongly inhibited by Cu2+ and SDS. These properties suggested that the hyaluronate lyase in this study could bring promising prospects in medical and industry applications.  相似文献   

14.
Cultivation ofBacillus subtilis-7A on waste from alcohol production yielded an active extracellular enzyme -amylase with MW 75 kDa. The enzyme was isolated from the culture medium by 60% saturated ammonium sulfate and purified until homogeneous by gel filtration on Sephadex G-100 and ion-exchange chromatography on DEAE-cellulose. The optimum temperatures for the complex and purified enzyme are 30 and 50°C, respectively. The optimum activity for both preparations occurred at pH 6.5. The substrate specificity of the isolated preparations was studied.  相似文献   

15.
A thermostable D-hydantoinase was isolated from thermophilic Bacillus thermocatenulatus GH-2 and purified to homogeneity by using immunoaffinity chromatography. The molecular mass of the enzyme was determined to be about 230 kDa, and a value of 56 kDa was obtained as a molecular mass of the subunit on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, implying that oligomeric structure of the enzyme is tetrameric. Isoelectric pH of the enzyme was found to be approx 4.3. The enzyme required Mn2+ for the activity and exhibited its highest activity with phenylhydantoin as a substrate. The optimal pH and temperature for catalytic activity were about 7.5 and 65 degrees C, respectively. The half-life of the enzyme was estimated to be about 45 min at 80 degrees C.  相似文献   

16.
We report a systematic analysis of the P1' and P2' substrate specificity of TNF-alpha converting enzyme (TACE) using a peptide library and a novel analytical method, and we use the substrate specificity information to design novel reverse hydroxamate inhibitors. Initial truncation studies, using the amino acid sequence around the cleavage site in precursor-TNF-alpha, showed that good turnover was obtained with the peptide DNP-LAQAVRSS-NH2. Based on this result, 1000 different peptide substrates of the form Biotin-LAQA-P1'-P2'-SSK(DNP)-NH2 were prepared, with 50 different natural and unnatural amino acids at P1' in combination with 20 different amino acids at P2'. The peptides were pooled, treated with purified microsomal TACE, and the reaction mixtures were passed over a streptavidin affinity column to remove unreacted substrate and the N-terminal biotinylated product. C-terminal cleavage products not binding to streptavidin were subjected to liquid chromatography/mass spectrometry analysis where individual products were identified and semiquantitated. 25 of the substrates were resynthesized as discrete peptides and assayed with recombinant TACE. The experiments show that recombinant TACE prefers lipophilic amino acids at the P1' position, such as phenylglycine, homophenylalanine, leucine and valine. At the P2' position, TACE can accommodate basic amino acids, such as arginine and lysine, as well as certain non-basic amino acids such as citrulline, methionine sulfoxide and threonine. These substrate preferences were used in the design of novel reverse hydroxamate TACE inhibitors with phenethyl and 5-methyl-thiophene-methyl side-chains at P1', and threonine and nitro-arginine at P2'.  相似文献   

17.
Adenosine diphosphatase (ADPase) activity was solubilized with a non-ionic detergent, Tween 20, from human umbilical vessels and purified to homogeneity by diethylaminoethyl-Sepharose CL-6B, adenosine 5'-monophosphate-Sepharose 4B, and concanavalin A-Sepharose chromatography. The apparent molecular mass was 75 kDa. The purified enzyme hydrolyzed pyrophosphate bonds of nucleoside di- and triphosphates in the presence of calcium ion. It was insensitive to the adenosine triphosphatase (ATPase) inhibitors, oligomycin and ouabain, and sensitive to sodium azide. Therefore, we concluded that the ADPase activity in human umbilical vessels does not derive from ADPase degrading only ADP but from ATP diphosphohydrolase (EC 3.6.1.5). The broad substrate specificity and the sensitivity to various inhibitors and calcium ion are common to ATP diphosphohydrolase from bovine aorta. However, there might exist some structural difference around the active site, because the antiserum raised in rabbit against the bovine aorta enzyme scarcely inhibited the human umbilical enzyme.  相似文献   

18.
A new extracellular ribonuclease (RNase) from a mutant of Aspergillus niger, named A. niger SA-13-20 RNase, was purified to homogeneity by (NH4)2SO4 fractionation (50-85%), DEAE-cellulose anion-exchange chromatography, ultrafiltration and Sephacryl HR-200 chromatography. The enzyme was purified up to 54.4-fold with a final yield of 24.5%. There were differences in the molecular weight, pI value and some physico-chemical properties between A. niger SA-13-20 RNase and that from the parent strain. The enzyme is monomeric and its molecular weight and isoelectric point were 40.1 kDa and 5.3, respectively. The N-terminal amino acid sequence of A. niger SA-13-20 RNase was TIDTYSSDSP. The optimum pH, temperature and buffer concentration for the enzymatic reaction were 3.5, 65 degrees C, and 0.175 M, respectively. Metal ions, such as K+, NH4+, Mg2+, and Ca2+ at the concentration of 1.0 mM had a slight activation effect on the enzyme activity and (NH4)2SO4 activated the enzyme significantly. The enzyme was stable at pH lower than 8.5 and was easy to inactivate in strong alkali solution.  相似文献   

19.
Glutathione reductase was purified from chicken liver and some characteristics of the enzyme were investigated. The purification procedure was composed of four steps: preparation of homogenate, ammonium sulfate precipitation, 2′,5′-ADP Sepharose 4B affinity chromatography, and Sephadex G-200 gel filtration chromatography. Owing to the four consecutive procedures, the enzyme was purified 1714-fold, with a yield of 38%. Specific activity at the final step was 120 enzyme unit (EU)/mg of protein. The purified enzyme showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of the enzyme was found to be 100 kDa by Sephadex G-200 gel filtration chromatography, and the subunit molecular weight was found to be 43 kDa by SDS-PAGE. Optimum pH, stable pH, optimum ionic strength, and optimum temperature were 7.0, 7.4, 0.75 M Tris-HCl buffer including 1 mM EDTA, and 50°C, respectively. K M and V max values for NADPH and glutathione disulfide (GSSG) substrates were also determined for the enzyme.  相似文献   

20.
The metabolic intermediate and endocannabinoid signaling lipid 2-arachidonoylglycerol (2-AG) has not been readily labeled, primarily because of its instability toward rearrangement. We now detail a synthetic method that easily gives tritiated 2-AG from [5,6,8,9,11,12,14,15-(3)H(N)]arachidonic acid in two steps. We utilized a short chain 1,3-diacylglycerol and proceeded through the "structured lipid" [5',6',8',9',11',12',14',15'-(3)H(N)]2-arachidonoyl-1,3-dibutyrylglycerol, a triacylglycerol that was conveniently deprotected in ethanol with acrylic beads containing Candida antarctica lipase B to give [5',6',8',9',11',12',14',15'-(3)H(N)]2-arachidonoylglycerol ([(3)H]2-AG). The flash chromatographic separation necessary to isolate the labeled 2-acylglycerol [(3)H]2-AG resulted in only 4% of the rearrangement byproducts that have been a particular problem with previous methodologies. This reliable "kit" method to prepare the radiolabeled endocannabinoid as needed gave tritiated 2-arachidonoylglycerol [(3)H]2-AG with a specific activity of 200 Ci/mmol for enzyme assays, metabolic studies, and tissue imaging. It has been run on unlabeled materials on over 10 mg scales and should be generally applicable to other 2-acylglycerols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号