首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dimeric macrocycles [[P(mu-NtBu)]2.LL]2 [LL = OCH2C(Me)2CH2O (1), 2,6-(NH)2C5H3N (2), 1,2-(NH)2C6H4(3)] have been obtained by the reactions of the appropriate diols and diamines (LLH2) with the dimeric phosph(III)azane [ClP(mu-NtBu)]2. Under different conditions the reaction of 1,2-(NH2)2C6H4 with [ClP(mu-NtBu)]2 gives the monomer [[P(mu-NtBu)]2.[1,2-(NH)2C6H4]] (4) (instead of the dimer 3). Contrary to the literature, the results illustrate that the formation of dimeric macrocycles is common in these reactions and dependent among other factors on the steric demands and length of the organic spacer (LL) as well as the reaction conditions.  相似文献   

2.
The tetrameric macrocycle [(P(mu-NtBu))2(1,4-(NH)2C6H4)]4, obtained from the reaction of the phosphazane dimer [ClP(mu-NtBu)]2 with p-phenylenediamine, has an unusual folded conformation in the solid state and contains a roughly tetrahedral arrangement of endo N-H groups for the potential coordination of anions.  相似文献   

3.
The reaction of [ClP(mu-NtBu)]2 with 1,5-diamino-naphthalene [1,5-(NH2)2C10H6] in Et3N-thf gives the trimeric macrocycle [{P(mu-NtBu)}2{1,5-(NH)2C10H6}]3(1); the X-ray structure of the toluene solvate 1.3toluene reveals a cone-shaped (calixarene-like) arrangement in which toluene guest molecules are trapped within the cavity.  相似文献   

4.
5.
The reactions of cyclodiphosphazane cis-[tBuNP(OC6H4OMe-o)]2 (1) with 2 equiv of CuX in acetonitrile afforded one-dimensional Cu(I) coordination polymers [Cu2X2{tBuNP(OC6H4OMe-o)}2]n (2, X = Cl; 3, X = Br; 4, X = I). The crystal structures of 2 and 4 reveal a zigzag arrangement of [P(mu-N)(2)P] and [Cu(mu-X)(2)Cu] units in an alternating manner to form one-dimensional Cu(I) coordination polymers. The reaction between 1 and CuX in a 2:1 ratio afforded mononuclear tricoordinated copper(I) complexes of the type [CuX{(tBuNP(OC6H4OMe-o))2}2] (5, X = Cl; 6, X = Br; 7, X = I). The single-crystal structures were established for the mononuclear copper(I) complexes 5 and 6. When the reactant ratios are 1:1, the formation of a mixture of polymeric and mononuclear products was observed. The Cu(I) polymers (2-4) were converted into the mononuclear complexes (5-7) by reacting with 3 equiv of 1 in dimethyl sulfoxide. Similarly, the mononuclear complexes (5-7) were converted into the corresponding polymeric complexes (2-4) by reacting with 3 equiv of copper(I) halide under mild reaction conditions.  相似文献   

6.
7.
8.
The condensation reactions of the dimer [ClP(micro-NR)](2) with organic diacids [LL(H)(2)], possessing linear orientations of their organic groups, result in the formation of phospha(III)zane macrocyles of the type [{P(mu-NR)}(2)(LL)](n) of various sizes. The series of macrocycles [{P(mu-N(t)Bu)}(2){1,5-(NH)(2)C(10)H(6)}](3), [{P(mu-NCy)}(2)(1,5-O(2)C(10)H(6))](n) [n = 3; n = 4], [{P(mu-N(t)Bu)}(2){1,4-(NH)(2)C(6)H(4)}](4), [{P(mu-N(t)Bu)}(2)(1,4-O(2)C(6)H(4))], [{P(mu-NCy)}(2)(1,4-O(2)C(6)H(4))](3) and [{P(mu-N(t)Bu)}(2){(NH)C(6)H(4)OC(6)H(4)(NH)}](2) can be related to classical organic frameworks, like calixarenes.  相似文献   

9.
The reaction of [Mo(3)S(4)(H(2)O)(9)](4+) (1) with [(CpRhCl(2))(2)] afforded a novel rhodium-molybdenum cluster, [{Mo(3)RhCpS(4)(H(2)O)(7)(O)}(2)](8+) (2). X-ray structure analysis of [2](pts)(8).14H(2)O (pts(-) = CH(3)C(6)H(4)SO(3)(-)) has revealed the existence of a new oxo-bridged twin cubane-type core, (Mo(3)RhCpS(4))(2)(O)(2). The high affinity of the CpRh group for sulfur atoms in 1 seems to be the main driving force for this reaction. The strong Lewis acidity of the CpRh group in intermediate A, [Mo(3)RhCpS(4)(H(2)O)(9)](6+), caused a release of proton from one of the water molecules attached to the molybdenum atoms to give intermediate B, [Mo(3)RhCpS(4)(H(2)O)(8)(OH)](5+). The elimination of two water molecules from two intermediate B molecules, followed by the deprotonation reaction of hydroxo bridges, generated the twin cubane-type cluster 2. The formal oxidation states of rhodium and molybdenum atoms are the same before and after the reaction (i.e., Mo(IV)(3), Rh(III)). The Mo-O-Mo moieties in [2](pts)(8).14H(2)O are nearly linear with a bond angle of 164.3(3) degrees, and the basicity of the bridging oxygen atoms seems to be weak. For this reason, protonation at the bridging oxygen atoms does not occur even in a strongly acidic aqueous solution. The binding energy values of Mo 3d(5/2), Rh 3d(5/2), and C 1s obtained from X-ray photoelectron spectroscopy measurements for [2](pts)(8).14H(2)O are 229.8, 309.3, and 285 eV, respectively. The XPS measurements on the Rh 3d(5/2) binding energy indicate that the oxidation state of Rh is 3+. The binding energy of Mo 3d(5/2) (229.8 eV) compares with that observed for [1](pts)(4).7H(2)O (230.7 eV, Mo 3d(5/2)). A lower energy shift (0.9 eV) is observed in the binding energy of Mo 3d(5/2) for [2](pts)(8).14H(2)O. This energy shift may correspond to the coordination of an oxygen atom having a negative charge to the molybdenum atom.  相似文献   

10.
The new cyclic phosph(V)azane ligand [(C6H5N)P(O)H]2 (2) is obtained from the reaction between PCl3 and PhNH2 in toluene followed by controlled hydrolysis of the product in an H2O–CHCl3 solution. Compound 2 is the first example of P(V) dimer [(µ-NC6H5)P(H)=O]2, a P2N2 ring with two P(O)H moieties. The reaction of 2 with ZnCl2 in a molar ratio of 1?:?1 in tetrahydrofuran yields the cyclophosph(V)azane complex Cl2Zn[(C6H5N)P(O)H]2 (3) in which Zn–O bonds form directly between a cyclic phosph(V)azane ligand and Zn(II). The products have been characterized by infrared, multinuclear (1H, 31P, 13C) NMR, mass spectrometry, and elemental analysis.  相似文献   

11.
12.
13.
Reaction of [Ru(p-cymene)Cl2]2 with [H7P8W48O184]33- (P8W48) in aqueous acidic medium results in the organometallic derivative [{K(H2O)}3{Ru(p-cymene)(H2O)}4P8W49O186(H2O)2]27- (1); in addition to the four {Ru(p-cymene)(H2O)} units, an unusual WO6 group with four equatorial, terminal ligands is also grafted to the crown-shaped P8W48 precursor.  相似文献   

14.
15.
Eisler DJ  Chivers T 《Inorganic chemistry》2006,45(26):10734-10742
The dichlorocyclodistib(III)azane [ClSb(mu-NtBu)]2 (1) has been shown to exist as the cis isomer in the solid state. A series of bis(1 degree-amino)cyclodistib(III)azanes [R'NHSb(mu-NtBu)]2 (2, R' = tBu; 3, R' = Dipp; 4, R' = Dmp) has been prepared by the reaction of 1 with 2 equiv. of LiNHR'. On the basis of NMR solution spectra, all three derivatives are formed as a mixture of cis and trans isomers. In the case of 3, the structures of both the cis and trans isomers have been determined by X-ray crystallography; cis-3 adopts an endo, endo arrangement for the amido protons of the DippNH groups. Isomerization of trans-3 into cis-3 occurs slowly in solution. Deprotonation of 2 with 2 equiv. of nBuNa or trans-3 with nBuLi produces [Na2Sb2(mu-NtBu)4] (5) and [Li2Sb2(mu-NtBu)2(mu-NDipp)2] (6), whose solvated cubane structures were established by X-ray crystallography. In contrast, the reaction of cis-3 with 2 equiv. of nBuLi produces the tricyclic compound [Li2Sb(mu-NtBu)2(mu-NDipp)(mu-NHDipp)] (7).  相似文献   

16.
Two germanato‐polyoxovanadates with the {V15Ge6O48} cluster core are extended by covalent bonds to four transition metal amine complexes [M(tren)]2+ (M = Co and Zn, tren = tris(2‐aminoethyl)amine). The complexes have bonds to terminal atoms of the Ge2O7 units and such expansion of a germanato‐polyxovanadate was never observed before. The characterization of these compounds revealed the presence of two protonated tren molecules charge balancing the negative charges of the [{M(tren)}4V15Ge6O48(H2O)]4– anion.  相似文献   

17.
The benzene-Ru(II)-supported dilacunary decatungstosilicate [{Ru(C6H6)(H2O)}{Ru(C6H6)}(gamma-SiW10O36)]4- and the isostructural decatungstogermanate [{Ru(C6H6)(H2O)}{Ru(C6H6)}(gamma-GeW10O36)]4- have been synthesized and characterized by multinuclear solution NMR, IR, elemental analysis, and electrochemistry. Single-crystal X-ray analysis was carried out on K4[{Ru(C6H6)(H2O)}{Ru(C6H6)}(gamma-SiW10O36)].9H2O (K-1), which crystallizes in the orthorhombic system, space group Pmn2(1), with a = 13.6702(3) A, b = 16.2419(4) A, c = 12.1397(2) A, and Z = 2, and on K4[{Ru(C6H6)(H2O)}{Ru(C6H6)}(gamma-GeW10O36)].7H2O (K-2), which also crystallizes in the orthorhombic system, space group Pmn2(1), with a = 13.6684(12) A, b = 16.297(2) A, c = 12.1607(13) A, and Z = 2. Polyanions 1 and 2 consist of a Ru(C6H6)(H2O) group and a Ru(C6H6) group linked to a dilacunary (gamma-XW10O36) Keggin fragment resulting in an assembly with idealized Cs symmetry. The Ru(C6H6)(H2O) group is bound at the lacunary polyanion site via two Ru-O(W) bonds, whereas the Ru(C6H6) group is bound on the side via three Ru-O(W) bonds. Polyanions 1 and 2 were synthesized in aqueous acidic medium at pH 2.5 by the reaction of [Ru(C6H6)Cl2]2 with [gamma-SiW10O36]8- and [gamma-GeW10O36]8-, respectively. The formal potentials are roughly the same for the first W waves of 1 and 2. However, important differences appear for the second W waves. These observations indicate different acid-base properties for the reduced forms of 1 and 2. Three oxidation processes were detected: the oxidation of the Ru center is followed first by irreversible electrocatalytic processes of the Ru-benzene moiety and then of the electrolyte. Comparison of this behavior with that of the precursor reagent, [Ru(C6H6)Cl2]2, was useful to understand the main oxidation processes. A ligand substitution reaction was observed upon addition of dimethyl sulfoxide (dmso) to 1, 2, or [Ru(C6H6)Cl2]2. This reaction facilitates substantially the oxidation of the Ru center. The dmso was oxidized with large electrocatalytic currents more efficiently in the presence of 1 and 2 than with [Ru(C6H6)Cl2]2.  相似文献   

18.
The structures of the host-guest complexes [[[[P(mu-NtBu)]2(mu-NH)]5]I]-.[Li(thf)4]+ [2.I[Li(thf)4]] and [[[P(mu-NtBu)]2(mu-NH)]5].HBr.THF (2.HBr.THF) show that increased distortion of the framework of the pentameric macrocycle [[[P(mu-NtBu)]2(mu-NH)]5] (2) occurs with the larger halide ions. Theoretical studies show that the thermodynamic stabilities of the model host-guest anions [2.X]- (X=Cl, Br, I) are in the order Cl- approximately Br->I-, that is, the reverse of the templating trend observed experimentally. These studies support the view that the selection of the pentamer 2 over the tetramer [[[P(mu-NtBu)]2(mu-NH)]4] (1) is kinetically controlled, a conclusion which is also consistent with the previous observation that the frameworks of 1 and 2 are not in dynamic equilibrium with each other.  相似文献   

19.
The ambidentate dianions [(t)BuN(E)P(mu-N(t)Bu)(2)P(E)N(t)Bu](2)(-) (5a, E = S; 5b, E = Se) are obtained as their disodium and dipotassium salts by the reaction of cis-[(t)Bu(H)N(E)P(mu-N(t)Bu)(2)P(E)N(H)(t)Bu] (6a, E = S; 6b, E = Se), with 2 equiv of MN(SiMe(3))(2) (M = Na, K) in THF at 23 degrees C. The corresponding dilithium derivative is prepared by reacting 6a with 2 equiv of (t)BuLi in THF at reflux. The X-ray structures of five complexes of the type [(THF)(x)()M](2)[(t)BuN(E)P(mu-N(t)Bu)(2)P(E)N(t)Bu] (9, M = Li, E = S, x = 2; 11a/11b, M = Na, E = S/Se, x = 2; 12a, M = K, E = S, x = 1; 12b, M = K, E = Se, x = 1.5) have been determined. In the dilithiated derivative 9 the dianion 5a adopts a bis (N,S)-chelated bonding mode involving four-membered LiNPS rings whereas 11a,b and 12a,b display a preference for the formation of six-membered MNPNPN and MEPNPE rings, i.e., (N,N' and E,E')-chelation. The bis-solvated disodium complexes 11a,b and the dilithium complex 9 are monomeric, but the dipotassium complexes 12a,b form dimers with a central K(2)E(2) ring and associate further through weak K.E contacts to give an infinite polymeric network of 20-membered K(6)E(6)P(4)N(4) rings. The monoanions [(t)Bu(H)N(E)P(mu-N(t)Bu)(2)P(E)N(t)Bu)](-) (E = S, Se) were obtained as their lithium derivatives 8a and 8b by the reaction of 1 equiv of (n)BuLi with 6a and 6b, respectively. An X-ray structure of the TMEDA-solvated complex 8a and the (31)P NMR spectrum of 8b indicate a N,E coordination mode. The reaction of 6b with excess (t)BuLi in THF at reflux results in partial deselenation to give the monolithiated P(III)/P(V) complex [(THF)(2)Li[(t)BuN(Se)P(mu-N(t)Bu)(2)PN(H)(t)Bu]] 10, which adopts a (N,Se) bonding mode.  相似文献   

20.
Two new disubstituted derivatives of the clusters Rh6(CO)16 and H4Ru4(CO)12 with the heterobidentate ligand [Ph2P(2-CH3SC6H4)] were synthesized. Structures of these compounds were completely characterized both in solid phase and solution. The H4Ru4(CO)10[k2(P,S)-Ph2P(2-CH3SC6H4)] cluster is an example of a structure, in which a chelating coordination of a heterobidentate ligand results in the occurrence of a center of asymmetry associated with the substituted metal atom. This type of polynuclear complexes is of interest for obtaining essentially new catalysts for asymmetric synthesis on the basis of cluster compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号