首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have investigated the dewetting behaviour of a thin polystyrene film on top of cross-linked network of the same polymer. By changing the cross-linking density, the dynamic of the dewetting is modified. The behaviour of the contact angle and dewetting velocity can be related to the interfacial width between the polymers. We observe moreover that while the lost of entropy of the network connected to the penetration of the free chains will favour the dewetting; the possible presence of “connectors” between the layers will tend to stabilize the wetting. By modifying the entropy of the mesh by swelling the cross-linked system with a reservoir of the same polymer, the mesh is saturated and a stable interface without interdiffusion between the layers is obtained: in this case a constant contact angle and slippage length are obtained. Networks with higher cross-linking density are more difficult in general to swell – the mesh size is smaller - and the complete saturation is not reached.  相似文献   

2.
聚合物熔体膜在基体表面上的润湿和铺展行为受铺展系数和Hamaker常数影响。对于不能在基体表面上铺展的聚合物膜,当处于其玻璃化温度以上时,聚合物熔体膜将破裂,出现非连续区域。随着体系处于聚合物玻璃化温度以上时间的延长,非连续部分尺寸不断增长,增长速率与表面张力、聚合物粘度、聚合物液滴在基体表面的平衡接触角等因素有关,平衡后聚合物以液滴的形式在基体表面稳定存在。将带功能端基聚合物加入不能在基体表面上铺展的聚合物中,通过修饰聚合物与基体界面或改变聚合物熔体膜的表面张力,可以使原来不能在基体表面铺展的聚合物保持稳定。本文综述了聚合物熔体膜的铺展和润湿动力学研究进展,并归纳了使聚合物熔体膜稳定的方法。  相似文献   

3.
利用原子力显微镜研究了带有自然氧化层硅基底上聚苯乙烯薄膜在不同非溶剂诱导下的去润湿过程.研究发现,非溶剂是通过渗透取代机理诱导高分子薄膜发生去润湿.薄膜的形貌取决于成孔过程与孔增长过程的相对速度.当聚苯乙烯(PS)薄膜厚度为15 nm时,随着溶剂烷基链的增长,成孔数显著降低;然而孔开始合并时孔径明显地增加.当PS薄膜厚度增加到25 nm时,随着溶剂烷基链的增长,成孔数略有降低,薄膜形貌形成长程有序的双连续的结构.当PS膜厚为35 nm时,与其它2个膜厚相比,成孔数大幅下降.此外,温度和分子量能进一步降低去润湿过程中的成孔数,从而形成分形结构形貌.  相似文献   

4.
We have investigated the influence of the adsorption process on the dewetting behavior of the linear polystyrene film(LPS),the 3-arm star polystyrene film(3 SPS) and the ring polystyrene film(RPS) on the silanized Si substrate.Results show that the adsorption process greatly influences the dewetting behavior of the thin polymer films.On the silanized Si substrate,the 3 SPS chains exhibit stronger adsorption compared with the LPS chains and RPS chains; as a result,the wetting layer forms more easily.For LPS films,with the decrease of annealing temperature,the kinetics of polymer film changes from exponential behavior to slip dewetting.As a comparison,the stability of 3 SPS and RPS films switches from slip dewetting to unusual dewetting kinetic behavior.The adsorbed nanodroplets on the solid substrate play an important role in the dewetting kinetics by reducing the driving force of dewetting and increase the resistant force of dewetting.Additionally,Brownian dynamics(BD) simulation shows that the absolute values of adsorption energy(ε) gradually increase from linear polymer(-0.3896) to ring polymer(-0.4033) and to star polymer(-0.4264),which is consistent with the results of our adsorption experiments.  相似文献   

5.
The morphology of the film of polystyrene-block-poly(methyl methacrylate)(PS-b-PMMA) block copolymer having polystyrene(PS) cylinder forming composition spin-coated on a neutral brush modified silicon substrate has been investigated in this report. A mushroom-shaped morphology formed in the film with one period to two periods(L0―2L0) in thickness, which was spin-coated under a low humidity condition(RH ca.13%) and then thermally annealed at an extreme high temperature(230 °C). The results suggest that the s...  相似文献   

6.
We performed Monte Carlo simulations of free‐standing, amorphous polyethylene (PE) thin films at 509 K. The three films are constructed from 9, 36, or 144 independent parent PE chains, with 100 carbon atoms per chain. The two‐dimensional periodic cross‐sectional area of the simulation box is proportional to the number of independent parent chains, with the 144‐chain film having an area four times larger than the 36‐chain film. All three films have a similar bulk density and a comparable thickness between the two free surfaces. The 144‐chain film with the largest periodic surface area has a broader density profile due to the increased roughness of its surfaces. Snapshots of its surfaces along the trajectory indicate dynamic changes in the high and low regions of the rough surfaces. Diffusion of the chains parallel to the free surfaces is suppressed in the 144‐chain film, due to increased surface roughness. The tendency of bonds to orient parallel to the free surface is less pronounced in films with higher surface roughness.  相似文献   

7.
将星形支化结构的聚己内酯, 包括六臂星形聚己内酯(HPCL)和树枝状星形聚己内酯(DPCL), 以及线形聚己内酯(LPCL)室温旋涂于云母片上,通过原子力显微镜(AFM)观察分子结构对星形支化聚己内酯超薄膜的润湿-去润湿性质的影响. 在旋涂过程中, 薄膜的形成受去润湿和结晶竞争的控制. 差示扫描量热(DSC)测试结果表明, 当相对分子质量相同时, 结晶性的顺序是: DPCL最弱, HPCL次弱, LPCL最强. 依据分子结构和相对分子质量的影响, 即去润湿和结晶竞争的结果, LPCL、HPCL和DPCL的超薄膜表现出不同的表面形态, 包括尺寸不同的完整的球晶、开口的球晶、树枝状片、分散的颗粒.  相似文献   

8.
Thin hybrid films of ZnO/eosin-Y were prepared by electrodeposition at-0.8 and-0.9 V in aqueous and non-aqueous baths at temperatures ranging from 40 to 90 ℃ with dye concentrations of 100 and 400 μmol·L-1.The films were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),energy-dispersive X-ray analysis (EDX),and absorption spectroscopy.The films prepared in a non-aqueous bath were non-porous and did not adsorb dye molecules on their surface.However,the films grown in aqueous media were porous in nature and adsorbed dye during the deposition of ZnO.Preferential growth of the film along the (002) face was observed,and the highest crystallinity was achieved when the film was deposited at 60 ℃.The maximum absorption was achieved for the films grown at 60 to 70 ℃,a deposition potential of-0.9 V,and a dye concentration of 100 μmol·L-1.  相似文献   

9.
The microphase separation and morphology of symmetric diblock copolymer thin films confined in a slit with neutral or attractive surfaces were studied by the cell dynamic system method (CDS) and Monte Carlo simulation. The size effect, especially in CDS, was carefully investigated indicating that excessively small sizes in the X‐ and Y‐directions will give incorrect results although periodic boundary conditions are imposed. When the walls are neutral, parallel ordered lamella structure only exists over a short range, while irregular microdomain morphology occurs over the whole region. When directional quenching is applied, or the walls are attractive to one of the blocks, a periodical lamellar structure of alternating A‐rich and B‐rich layers occurs over the whole region of the film. Changing the slit width and the strength of interaction will influence the period and arrangement of lamellae. Agreement between the results from CDS and those from simulation is satisfactory indicating the reliability of the CDS method. Comparisons with corresponding experimental results are also discussed.  相似文献   

10.
Summary: We analyzed quantitatively the effects of temperature on the morphologic evolution of the desorption process in hot water measured ex situ by atomic force microscopy. The morphology of the hole that forms with immersion of the polyelectrolyte film in hot water has characteristics similar to those from polymer dewetting processes near the glass transition temperature. The hole diameter immediately reaches a maximum in the desorption process while the number of holes increases linearly with time.

AFM images of the morphology of PEM film after immersion in hot water 60 min.  相似文献   


11.
采用光学显微镜及原子力显微镜等实验手段研究了聚苯乙烯(PS)膜在水和丙酮混合溶剂诱导下的去润湿过程.实验发现,在亲水基底上,随着丙酮含量的减少,在整个去润湿过程中孔半径与时间呈e指数关系[R~exp(t/τ)],然后呈线性关系(R~t),最后为R~t0.76,并且孔增长机理从成核增长机理转变为取代机理.在疏水基底上,随...  相似文献   

12.
The effects of film thickness and composition ratio on the morphology evolution of polystyrene (PS)/poly(vinyl methyl ether) (PVME) blend thin films were investigated. Diverse morphology evolutions including droplet-matrix structure, hole emergence, bicontinuous structure formation, percolation-to-droplet transition could be observed under annealing in two-phase region, depending on film thickness and composition ratio. The mechanism for these morphology variations was related to the complex effects of phase separation, dewetting and preferential wetting. The comparison between the thickness of bottom PVME layer and the twice of gyration radius 2Rg(PVME) played a dominant role in morphology control. Only when the PS/PVME film had specific film thickness and compositional symmetry, phase separation and dewetting could happen in sequence.  相似文献   

13.
Summary: Dynamics of dewetting and phase separation in ultrathin films (thickness is ca. one radius of gyration, ≈1 Rg) of poly(methyl methacrylate) (PMMA) and poly(styrene‐ran‐acrylonitrile) (SAN) blends on Si substrate has been studied by in situ atomic force microscopy (AFM). In the miscible region, a “spinodal‐like” dewetting driven by a composition fluctuation recently predicted by Wensink and Jérôme (Langmuir 2002 , 18, 413) occurs. In the two‐phase region, the dewetting of the whole film is followed by phase separation in the droplets, coupling with the wetting of the substrate by the PMMA extracted by the strong attractive interaction between them.

  相似文献   


14.
Coarse-grained molecular dynamics simulations were carried out to investigate the dewetting behavior of a polymer thin film on partial wetting solid surface at the early stage of the dewetting process. Spontaneous dewetting is initiated by removing a band of strip from both the ends of the liquid polymer film which has achieved equilibrium. The solid-liquid interaction and temperature were varied to show their influence on the dewetting dynamics during dewetting as well as the shape evolution of the liquid ...  相似文献   

15.
Isocyanate-treated graphite oxides(i GOs) were well-dispersed into the polystyrene(PS) thin films and formed a novel network structure. With control in fabrication, an i GOs-web layer was horizontally embedded near the surface of the films and thus formed a composite slightly doped by i GOs. This work demonstrated that the i GOs network can remarkably depress the dewetting process in the polymer matrix of the composite, while dewetting often leads to rupture of polymer films and is considered as a major practical limit in using polymeric materials above their glass transition temperatures(Tg). Via annealing the 50–120 nm thick composite and associated neat PS films at temperatures ranging from 35 °C to 70 °C above Tg, surface morphology evolution of the films was monitored by atomic force microscopy(AFM). The i GOs-doped PS exhibited excellent thermal stability, i.e., the number of dewetting holes was greatly reduced and the long-term hole growth was fairly restricted. In contrast, the neat PS film showed serious surface fluctuation and a final rupture induced by ordinary dewetting. The method developed in this work may pave a road to reinforce thin polymer films and enhance their thermal stability, in order to meet requirements by technological advances.  相似文献   

16.
CuAlO2 thin films were prepared on sapphire substrate by sol-gel method. The influences of annealing temperature, heating rates and annealing time on composition, morphology and photoelectric performance of film were investigated. The results of X-ray power diffraction, scanning electron microscope, transmissivity, and hall parameter tests showed that the CuAlO2 phase was relatively pure when the annealing temperature was above 950 °C. The higher the temperature, the higher the peak position. Under the optimal conditions, CuAlO2 film exhibited the best transmittance (90%) and the highest conductivity (1.23 S cm?1). On this basis, increasing the heating rate and annealing time was in favor of enlarging the size of the particles and the film grain growth direction tended to be unified.  相似文献   

17.
ABSTRACT

Self-assembly of binary block copolymer blends in thin film induced by solvent vapor annealing has been systematically studied. The diblock copolymers polystyrene-b-poly(2-vinylpyridine) with different molecular weights and volume fractions were blended with different molar ratios to cast thin films on silica substrate by spin coating. The films were annealed separately in the vapor of ethanol or toluene over time to induce morphology transformations from spheres, gyroids, and bicontinuous nanostructures, depending on the blending ratio, solvent selectivity, and annealing time, as investigated by atomic force microscopy and X-ray photoelectron spectroscopy. The formation and transformation mechanism of the self-assembly structure are discussed in the context of solvent-copolymer interactions. This study provides new insights into the simple manipulation of self-assembled nanostructures of block copolymer thin films.  相似文献   

18.
Organic semiconductor materials have recently gained momentum due to their non-toxicity, low cost, and sustainability. Xylindein is a remarkably photostable pigment secreted by fungi that grow on decaying wood, and its relatively strong electronic performance is enabled by π–π stacking and hydrogen-bonding network that promote charge transport. Herein, femtosecond transient absorption spectroscopy with a near-IR probe was used to unveil a rapid excited-state intramolecular proton transfer reaction. Conformational motions potentially lead to a conical intersection that quenches fluorescence in the monomeric state. In concentrated solutions, nascent aggregates exhibit a faster excited state lifetime due to excimer formation, confirmed by the excimer→charge-transfer excited-state absorption band of the xylindein thin film, thus limiting its optoelectronic performance. Therefore, extending the xylindein sidechains with branched alkyl groups may hinder the excimer formation and improve optoelectronic properties of naturally derived materials.  相似文献   

19.
采用原子力显微镜观测了由四氢呋喃和2-丁酮分别作为共溶剂制备得到的聚苯乙烯/聚甲基丙烯酸甲酯(PS/PMMA)共混物薄膜的表面形貌.研究发现,溶剂效应对共混物薄膜的表面形貌有较大影响,表面形貌中凸起与凹坑的组分分布是由溶剂效应决定的,与组分比无关.溶剂对不同组分的溶解能力不同还可以导致薄膜表面相逆转点的偏移.  相似文献   

20.
In recent years, the dewetting behavior of block copolymer films has been studied a lot, but that of random copolymer films was rarely studied. In this study, effects of film thickness and solvent vapor annealing duration (0 s–24 h) on the dewetting behavior of the spin-coated poly(styrene-co-acrylonitrile) (SAN) random copolymer films were mainly investigated by atomic force microscopy and contact angle method for the first time. The film thicknesses of the SAN films prepared at different concentrations were characterized by X-ray reflectometry to be 6–34 nm. With the annealing of acetone vapor, the SAN films first appear holes and then rupture into droplets which fuse and break periodically. The periodic evolutions of the droplets are due to the preferred affinity of acetone molecules with the AN segments and the change of surface energy. This phenomenon is different from the single evolutions in the spin-coated polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) block copolymer films. This illustrates the interactions between AN segments and the substrate are stronger than those between PMMA segments and the substrate in the spin-coated films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号