首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we report on the synthesis of ultrasmall gamma-Fe2O3 nanoparticles (5 nm) presenting a very narrow particle size distribution and an exceptionally high saturation magnetization. The synthesis has been carried out by decomposition of an iron organometallic precursor in an organic medium. The particles were subsequently stabilized in an aqueous solution at physiological pH, and the colloidal dispersions have been thoroughly characterized by complementary techniques. Particular attention has been given to the assessment of the mean particle size by transmission electron microscopy, X-ray diffraction, dynamic light scattering, magnetic, and relaxometric measurements. The good agreement found between the different techniques points to a very narrow particle size distribution. Regarding the magnetic properties, the particles are superparamagnetic at room temperature and present an unusually high saturation magnetization value. In addition, we describe the potential of these particles as specific positive contrast agents for magnetic resonance molecular imaging.  相似文献   

2.
A new strategy relying on the use of a phosphate‐based macromonomer (PAM200) to modify the surface of iron oxide nanoparticles was developed for the synthesis of submicrometer polystyrene (PS) magnetic particles. First, iron oxide nanoparticles were synthesized using the coprecipitation of ferrous and ferric salts in alkaline medium. Besides the classical oleic acid (OA)/octane‐based ferrofluid, styrene‐based ferrofluids were elaborated with either OA or PAM200 as the stabilizer. In all cases, maghemite (γ‐Fe2O3) was clearly identified, with nanoparticles rather spherical in shape but exhibiting broad particle size distribution (PSD). Both OA and PAM200 led to stable maghemite‐based ferrofluids showing superparamagnetic properties. Further use of these ferrofluids in styrene miniemulsion polymerization resulted in inhomogeneous distribution of maghemite among and inside the polymer particles with OA‐based ferrofluids, whereas PAM200/styrene‐based ferrofluids led to magnetic particles with homogeneous distribution of maghemite inside PS particles. Broad PSD and small nonmagnetic particles were however observed. The true mechanisms operating in these systems are still to elucidate, but this study validates PAM200 as an efficient compatibilizing agent between hydrophilic maghemite and hydrophobic PS. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 327–340, 2008  相似文献   

3.
In this work, the synthesis of magnetite nanoparticles by two variant chemical coprecipitation methods that involve reflux and aging conditions was investigated. The influence of the synthesis conditions on particle size, morphology, magnetic properties and protein adsorption were studied. The synthesized magnetite nanoparticles showed a spherical shape with an average particle size directly influenced by the synthesis technique. Particles of average size 27 nm and 200 nm were obtained. When the coprecipitation method was used without reflux and aging, the smallest particles were obtained. Magnetite nanoparticles obtained from both methods exhibited a superparamagnetic behavior and their saturation magnetization was particle size dependent. Values of 67 and 78 emu g−1 were obtained for the 27 nm and 200 nm magnetite particles, respectively. The nanoparticles were coated with silica, aminosilane, and silica-aminosilane shell. The influence of the coating on protein absorption was studied using Bovine Serum Albumin (BSA) protein.   相似文献   

4.
邱星屏 《中国化学》2000,18(6):834-837
Magnetic nanoparticles with average diameter in the range of 6.4-8.3 nni have been synthesized by a chemical co-precipitation of Fe(Ⅱ)and Fe(Ⅲ)salts in 1.5 M NH4OH solution.The size of the magnetic particles is dependent on both temperature and the ionic strength of the iron ion solutions.The magnetic particles formed at higher temperature or lower ionic strength were slightly larger than those formed at lower temperature or higher ionic strength respectively.In spite of the different reaction conditions,all the resultant nanoparticles are nearly spherical and have a similar crystalline structure.At 300 K,such prepared nanoparticles are superparam-agnetic.The saturation magnetizations for 7.8 and 6.4 nm particles are 71 and 63 emu/g respectively,which are only ~ 20-30% less than the saturation magnetization(90 emu/g)of bulk Fe3O4 Our results indicated that a control of the reaction conditions could be used to tailor the size of magnetic nanoparticles in free precipitation.  相似文献   

5.
Superparamagnetic iron oxide particles (SPIO) of maghemite were prepared in aqueous solution and subsequently stabilized with polymers in two layer-by-layer deposition steps. The first layer around the maghemite core is formed by poly(ethylene imine) (PEI), and the second one is formed by poly(ethylene oxide)-block-poly(glutamic acid) (PEO-PGA). The hydrodynamic diameter of the particles increases stepwise from D(h) = 25 nm (parent) via 35 nm (PEI) to 46 nm (PEI plus PEO-PGA) due to stabilization. This is accompanied by a switching of their zeta-potentials from moderately positive (+28 mV) to highly positive (+50 mV) and finally slightly negative (-3 mV). By contrast, the polydispersity indexes of the particles remain constant (ca. 0.15). M?ssbauer spectroscopy revealed that the iron oxide, which forms the core of the particles, is only present as Fe(III) in the form of superparamagnetic maghemite nanocrystals. The magnetic domains and the maghemite crystallites were found to be identical with a size of 12.0 +/- 0.5 nm. The coated maghemite nanoparticles were tested to be stable in water and in physiological salt solution for longer than 6 months. In contrast to novel methods for magnetic nanoparticle production, where organic solvents are necessary, the procedure proposed here can dispense with organic solvents. Magnetic resonance imaging (MRI) experiments on living rats indicate that the nanoparticles are useful as an MRI contrast agent.  相似文献   

6.
Magnetic nanoparticles show great potential in RNA enrichment and separation for rapid detection of viral infection.Fundamental studies on the interaction between RNA and nanoparticles with uniform size and surface property are necessary for designing better adsorbent and optimizing the conditions.In this study,monodispersed superparamagnetic magnetite(Fe3O4) nanoparticles were synthesized by thermal decomposition and modified with tetramethylammonium hydroxide[N(CH3)4OH,TMAOH] that become highly dispersible and stable in water.High-efficiency plant viral RNA adsorption onto TMAOH/Fe3O4 nanoparticles in the extracted solution of plant leaves was demonstrated.The changes of surface charge of TMAOH on the Fe3O4 nanoparticles with pH contribute to the RNA adsorption and elution.Separating viral RNA with magnetic nanoparticles could be a simple,quick andhighly efficient method.  相似文献   

7.
Carbon encapsulated iron/iron-oxide nanoparticles were obtained using laser pyrolysis method. The powders were processed to produce stable and biocompatible colloidal aqueous dispersions. The synthesis method consisted in the laser decomposition of an aerosol of ferrocene solution in toluene. This process generated, in a continuous way and in a single step, a nanocomposite formed by amorphous carbon nanoparticles of 50-100 nm size in which isolated iron based nanoparticles of 3-10 nm size are located. The effect of using different carriers and additives was explored in order to improve the efficiency of the process. The samples after purification by solid-liquid extraction with toluene, were oxidised in concentrated nitric acid solution of sodium chlorate, washed and finally ultrasonically dispersed in 1 mM tri-sodium citrate solutions. The dispersions obtained have hydrodynamic particle size less than 150 nm and are stable in the pH range of 2-11. Finally the shortening of the transversal relaxation time of water protons produced by the dispersed particles was studied in order to test the feasibility of these systems to be traced by magnetic resonance imaging techniques.  相似文献   

8.
Iron oxide nanoparticles are being viewed with interest owing to the great potential they have in the biomedical applications like MRI contrast enhancement, targeted drug delivery, hyperthermia and recently in magnetic separation of cancer cells from the body. Templated synthesis has been considered ideal for synthesis of iron oxide nanoparticles as particles are attracted magnetically, in addition to usual flocculation through van der Waals attraction. Biological templates are attractive owing to their biocompatibility and the attractive porosity and surface chemistry that nature provides. Polysaccharides like chitosan and alginate have been employed in the synthesis of a polyion complex, which provided the active-binding sites for iron(II) ions in solution to bind. The natural organization of chitosan and alginate into a porous film has been exploited to synthesize spherical iron oxide nanoparticles through careful calcination of the iron(II) conjugate film. Our experiments indicate that the formed nanoparticles are highly crystalline, confirm to the hematite structure and have a superparamagnetic response with a low coercivity of 116 Oe. Particles thus synthesized were highly monodisperse with hydrodynamic diameter of 1.8 nm. The symmetric porosity of the film translates into the synthesis of well-aligned nanoparticles of iron oxide. Compared to synthesis in solution, the film-assisted synthesis offered a greater degree of control over the particle size distribution pattern, with the chitosan–alginate template providing the needed spatial separation to prevent the aggregation due to magnetostatic coupling. Such hematite nanoparticles can either be used directly or converted to paramagnetic magnetite by reduction. Zeta potential measurements indicate highly stable nanoparticles, which can therefore be conjugated to cationic liposomes carrying drugs and magnetically guided to target sites.  相似文献   

9.
The ability to engineer the surface properties of magnetic nanoparticles is important for their various applications, as numerous physical and chemical properties of nanoscale materials are seriously affected by the chemical constitution of their surfaces. For some specific applications, nanoparticles need to be transferred from a polar to a nonpolar environment (or vice versa) after synthesis. In this work we have developed a universal method for the phase transfer of magnetic nanoparticles that preserves their shape and size. Octadecyltrimethoxysilane was used to cap the surfaces of the aqueous magnetic nanoparticles, thereby allowing their transfer into nonpolar solution. The resulting hydrophobic magnetic nanoparticles were transferred back into aqueous solution by subsequently covering them with an egg‐PC lipid monolayer. The superparamagnetic properties of the particles were retained after the phase transfer. The maximum transfer yields are dependent on their particle size with a maximum value of 93.16±4.75 % for magnetic nanoparticles with a diameter of 100 nm. The lipid‐modified magnetic particles were stable over 1 week, and thus they have potential applications in the field of biomedicine. This work also provides a facile strategy for the controllable engineering of the surface properties of nanoparticles.  相似文献   

10.
A study was made into the effect of the conditions (synthesis temperature, water content, iron salt(III) concentration, and nature of precipitant) of the synthesis of magnetite nanoparticles by high-temperature reductive hydrolysis of iron(III) salts in an ethylene glycol medium on their size and morphology. It was shown that is basically possible to carry out the direct synthesis of spherical particles with an average size of 55–170 nm while varying synthesis conditions. The obtained particles were characterized by X-ray powder diffraction analysis, and their magnetic properties were explored. The synthesized particles are ferrimagnets. The magnetic moments, numbers, and sizes of domains in magnetite particles of various sizes were found.  相似文献   

11.
《Electrophoresis》2018,39(12):1429-1436
Separations of bare superparamagnetic magnetite nanoparticles (BSPMNPs, approx. 11 nm diameter) was performed using non‐complexing (nitrate) and complexing (chloride, citrate and phosphate) electrolyte ions with additions of tetramethylammonium hydroxide (TMAOH), which is commonly applied to control the synthesis of stable iron oxides. The use of TMAOH as a background electrolyte (BGE) additive for capillary electrophoresis (CE) separations provided for the first time electropherograms of BSPMNPs exhibiting symmetrical and highly reproducible peaks, free of spurious spikes characteristic of nanoparticle clusters. Consequently, accurate determination of the electrophoretic effective mobility of BSPMNPs was possible, yielding a value of −3.345E‐08 m2 V−1 s−1 (relative standard deviation (RSD) of 0.500%). The obtained mobilities of BSPMNPs in the presence of various electrolyte ions show that the degree of complexation with the surface of BSPMNPs follows the order chloride < citrate < phosphate, correlating with the stabilities of Fe(III) complexes with the respective anions. Finally, bare and carboxylated iron oxide nanoparticles were successfully separated in only 10 min using 10 mM Tris‐nitrate containing 20 mM of TMAOH as electrolyte. Our findings show that simple and rapid CE experiments are an excellent tool to characterise and monitor properties and interactions of iron oxide nanoparticles with other molecules for surface modification purposes.  相似文献   

12.
Due to their small size (1-100 nm), nanoparticles exhibit novel materials properties that differ considerably from those of the bulk solid state. Especially in recent years, the interests in nanometer-scale magnetic particles are growing based on their potential application as high density magnetic storage media. A unique reverse micelle method has been developed to prepare gold-coated iron nanoparticles. XRD, UV/vis, TEM and magnetic measurements are used to characterize the nanocomposites. XRD only gives FCC paterns of gold for the obtained nanoparticles. There is a red shift and broadening of Au@Fe colloid relative to pure gold colloid in the absorption spectra. TEM results show that the average size of Au@Fe nanoparticle is about 10 nm. These nanoparticles self-assembled into wires in micron level under a 0.5 T magnetic field. Magnetic measurements show that the particles are superparamagnetic with a blocking temperature of 42 K. Coercivity of the obtained nanoparticles decreases with the measuring temperature, which are 730 Oe,320 Oe and 0 at 2 K, 10 K and 300 K, respectively.  相似文献   

13.
Nanoscaled particles showing superparamagnetic behavior have been intensively studied in the past years for various applications. Nevertheless, the lack of well-defined particles remains an important problem. One of the major challenges is still the large-scale synthesis of particles with a narrow size distribution. The aim of this work is to synthesize and characterize ferrofluids throughout a multistep synthesis. The iron oxide nanoparticles are first obtained by classical coprecipitation in water, followed by a thermochemical treatment and centrifugation to obtain well-dispersed primary nanoparticles. Finally polyvinyl alcohol is grafted onto the particles to ensure colloidal stability of the ferrofluid at neutral pH. The different synthesis steps and intermediate and side products are described. A model is proposed for the stabilization mechanism.  相似文献   

14.
We describe here the synthesis of 10 nm, monodisperse, iron oxide nanoparticles that we have coated with temperature-sensitive, biotinylated p(NIPAAm) (b-PNIPAAm). The PNIPAAm was prepared by the reversible addition fragmentation chain transfer polymerization (RAFT), and one end was biotinylated with a PEO maleimide-activated biotin to form a stable thioether linkage. The original synthesized iron oxide particles were stabilized with oleic acid. They were dispersed in dioxane, and the oleic acid molecules were then reversibly exchanged with a mixture of PNIPAAm and b-PNIPAAm at 60 degrees C. The b-PNIPAAm-coated magnetic nanoparticles were found to have an average diameter of approximately 15 nm by dynamic light scattering and transmission electron microscopy. The ability of the biotin terminal groups on the b-PNIPAAm-coated nanoparticles to interact with streptavidin was confirmed by fluorescence and surface plasmon resonance. It was found that the b-PNIPAAm-coated iron oxide nanoparticles can still bind with high affinity to streptavidin in solution or when the streptavidin is immobilized on a surface. We have also demonstrated that the binding of the biotin ligands on the surface of the temperature-responsive magnetic nanoparticles to streptavidin can be turned on and off as a function of temperature.  相似文献   

15.
超顺磁性高分子微球的制备与表征   总被引:20,自引:2,他引:18  
用化学共沉淀方法制备了Fe3O4纳米微粒,并用油酸(十八烯酸)和十二烷基苯磺酸钠为双层表面活性剂进行表面修饰,制备了稳定的水分散性纳米Fe3O4可聚合磁流体.在Fe3O4磁流体存在下,将苯乙烯与甲基丙烯酸通过乳液聚合方法制备了磁性高分子微球.透射电镜研究表明,Fe3O4微粒的平均粒径在10nm左右,乳液聚合形成的磁性高分子微球的粒径平均约为130nm;用超导量子干涉仪对微粒及高分子微球进行了磁性表征,结果表明,合成的Fe3O4纳米微粒以及磁性高分子微球均具有超顺磁性.同时,还用红外光谱及X射线衍射表征了磁性高分子微球的化学成分和晶体结构.用热失重方法测得磁性高分子微球中磁性物质的含量为23.6%.  相似文献   

16.
Ferrofluids, which are stable dispersions of magnetic particles, behave as liquids that have strong magnetic properties. Nanoparticles of magnetite with a mean diameter of 10-15 nm, which are in the range of superparamagnetism, are usually prepared by the traditional method of co-precipitation from ferrous and ferric electrolyte solution. When diluted, the ferrofluid dispersions are not stable if anionic or cationic surfactants are used as the stabilizer. This work presents an efficient way to prepare a stable aqueous nanomagnetite dispersion. A stable ferrofluid containing Fe3O4 nanoparticles was synthesized via co-precipitation in the presence of poly(acrylic acid) oligomer. The mechanism, microstructure, and properties of the ferrofluid were investigated. The results indicate that the PAA oligomers promoted the nucleation and inhibited the growth of the magnetic iron oxide, and the average diameter of each individual Fe3O4 particle was smaller than 10 nm. In addition, the PAA oligomers provided both electrostatic and steric repulsion against particle aggregation, and the stability of dispersions could be controlled by adjusting the pH value of solution. A small amount of Fe2O3 was found in the nanoparticles but the superparamagnetic behavior of the nanoparticles was not affected.  相似文献   

17.
The properties of polymer-coated magnetite nanoparticles, which have the potential to be used as effective magnetic resonance contrast agents, have been studied. The magnetite particles were synthesized by using continuous synthesis in an aqueous solution. The polymer-coated magnetite nanoparticles were synthesized by seed precipitation polymerization of methacrylic acid and hydroxyethyl methacrylate in the presence of the magnetite nanoparticles. The particle size was measured by laser light scattering. It was shown that the particle size, variance, magnetic properties, and stability of aqueous magnetite colloidal dispersion strictly depend on the nature of the stabilizing agent. The average hydrodynamic radius of the magnetite particles was found to be 5.7 nm in the stable aqueous colloidal dispersion. An inclusion of the magnetite particle into a hydrophilic polymeric shell increases the stability of the dispersion and decreases the influence of the stabilizing agent on the magnetic and structural properties of the magnetite particles as was shown by X-ray diffraction and M?ssbauer and IR spectroscopy, as well as by vibrating sample magnetometry. The variation in the polymeric shell size and the polymer net density can be useful tools for evaluation of the polymer-coated magnetite particles as effective contrast agents. Copyright 1999 Academic Press.  相似文献   

18.
PREPARATION AND CHARACTERIZATION OF PVA COATED MAGNETIC NANOPARTICLES*   总被引:4,自引:0,他引:4  
Polyvinyl alcohol coated magnetic particles (PVA ferrofluids) have been synthesized by chemical co-precipitationof Fe(Ⅱ)/Fe(Ⅲ) salts in 1.5 mol/L NH_4OH solution at 70℃ in the presence of PVA. The resultant colloidal particles havecore-shell structures, in which the iron oxide crystallites form the cores and PVA chains form the shells. The hydrodynamicdiameter of the colloidal particles is in the range of 108 to 155 nm, which increases with increasing PVA concentration from5 wt% to 20 wt%. The size of the magnetic cores is ca. 5~10 nm, which is relatively independent of PVA concentration.Under transmission electron microscopic (TEM) examination, the magnetic cores exhibit somewhat irregular shapes varyingfrom spherical, oval, to cubic. Magnetometry measurement revealed that the PVA coated magnetic particles aresuperparamagnetic. The saturation magnetization of 5 wt% and 20 wt% PVA ferrofluids at 300 K is 54 and 49 emu/g.respectively. All the PVA ferrofluids exhibited excellent colloidal stability in pure water and phosphate buffer saline (PBS,pH=7.4). The ferrofluids can remain stable in above solutions for more than three months at 4℃.  相似文献   

19.
The reaction of formation of magnetic iron oxide nanoparticles from aqueous solutions of Fe(+2,+3) salts was studied under homo- and heterophase conditions of capillary-porous bodies by the nuclear magnetic resonance relaxometry method. Magnetic composites based on Bio-Glas porous glasses were obtained by precipitation of iron oxide nanoparticles in pores ranging in size from 50 to 250 nm. The magnetic relaxation rate of water protons during the heterophase precipitation reaction was examined.  相似文献   

20.
The synthesis of nanosized superparamagnetic hematite particles by dissolving ferric salts in hydrochloric acid and heating at 100 degrees C is described. A hydrolysis reaction causes the formation of hematite particles. The influence of the sequence of additions on the resulting precipitates was studied using TEM and XRD. The magnetic behavior was characterized by magnetization measurements. It was found that small changes in the reaction conditions led to remarkable changes in final size and shape of the hematite crystallites. A well-defined subrounded morphology and an average diameter of 41 nm were obtained for superparamagnetic hematite particles. This is the largest size reported thus far for superpara-magnetic hematite particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号