首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micelle transformations upon metalation (i.e., incorporation of metal compounds and metal nanoparticle formation) in poly(methoxy hexa(ethylene glycol) methacrylate)-block-poly((2-(diethylamino)ethyl methacrylate)), PHEGMA-b-PDEAEMA, solutions have been studied using transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). Three different methods for the formation of metalated micelles are compared: (A) dissolution of the block copolymers in pure water followed by incorporation of platinic acid (H(2)PtCl(6).6H(2)O), (B) micellization in acidic molecular solutions of block copolymers induced by interaction of the protonated amino groups with the PtCl(6)(2)(-) ions, and (C) incorporation of metal species in pH-induced micelles. The latter method leads to well-defined metalated micelles of 22-25 nm diameter containing nanoparticles with diameters of 1.3-1.5 nm. No nanoparticle aggregation is observed. Good agreement is obtained for the sizes of the platinic acid-containing micelles assessed by TEM and PCS.  相似文献   

2.
Spontaneous formation and efficient stabilization of gold nanoparticles with an average diameter of 7 approximately 20 nm from hydrogen tetrachloroaureate(III) hydrate (HAuCl4.3H2O) were achieved in air-saturated aqueous poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer solutions at ambient temperature in the absence of any other reducing agent. The particle formation mechanism is considered here on the basis of the block copolymer concentration dependence of absorption spectra, the time dependence (kinetics) of AuCl4- reduction, and the block copolymer concentration dependence of particle size. The effects of block copolymer characteristics such as molecular weight (MW), PEO block length, PPO block length, and critical micelle concentration (cmc) are explored by examining several PEO-PPO-PEO block copolymers. Our observations suggest that the formation of gold nanoparticles from AuCl4- comprises three main steps: (1) reduction of metal ions by block copolymer in solution, (2) absorption of block copolymer on gold clusters and reduction of metal ions on the surface of these gold clusters, and (3) growth of metal particles stabilized by block copolymers. While both PEO and PPO blocks contribute to the AuCl4- reduction (step 1), the PEO contribution appears to be dominant. In step 2, the adsorption of block copolymers on the surface of gold clusters takes place because of the amphiphilic character of the block copolymer (hydrophobicity of PPO). The much higher efficiency of particle formation attained in the PEO-PPO-PEO block copolymer systems as compared to PEO homopolymer systems can be attributed to the adsorption and growth processes (steps 2 and 3) facilitated by the block copolymers. The size of the gold nanoparticles produced is dictated by the above mechanism; the size increases with increasing reaction activity induced by the block copolymer overall molecular weight and is limited by adsorption due to the amphiphilic character of the block copolymers.  相似文献   

3.
Advances in the nanoscale design of polymeric, “soft” materials and of metallic, “hard” materials can converge at the “interfaces” to form hybrid nanomaterials with interesting features. Novel optical, magnetic, electronic, and catalytic properties are conferred by metal nanoparticles, depending on their morphology (size and shape), surface properties, and long-range organization. We review here the utilization of block copolymers for the controlled synthesis and stabilization of metal nanoparticles. Solvated block copolymers can provide nanoscale environments of varying and tunable shape, dimensions, mobility, local polarity, concentration, and reactivity. In particular, block copolymers containing poly(ethylene oxide) can exhibit multiple functions on the basis of their organization at the intra-polymer level (i.e., crown ether-like cavities that bind and reduce metal ions), and at the supramolecular level (surface-adsorbed micelles, and ordered arrays of micelles). These block copolymers can thus initiate metal nanoparticle formation, and control the nanoparticle size and shape. The physically adsorbed block copolymers, which can be subsequently removed or exchanged with other functional ligands, stabilize the nanoparticles and can facilitate their integration into diverse processes and products. Block copolymers can be further useful in promoting long-range nanoparticle organization. Several studies have elucidated the nanoparticle synthesis and stabilization mechanism, optimized the conditions for different outcomes, extended the ranges of materials obtained and applications impacted, and generalized the scope of this functional polymer-based nanoparticle synthesis methodology.  相似文献   

4.
Polylactide (PLA) is a biodegradable polyester recognized for its potential use as a biomedical material. Poly(ethylene oxide) (PEO) and copolymers based on PEO and poly(propylene oxide) (PPO) are biocompatible polyethers widely applied in the biomedical field, particularly as macromolecular nonionic surfactants. In this work, PLA blocks were attached to the PEO and to the PEO and PPO-based triblock copolymer PEO–PPO–PEO, through ring-opening polymerization of racemic lactide (rac-LA) to obtain the amphiphilic triblock PLA–PEO–PLA and pentablock PLA–PEO–PPO–PEO–PLA copolymers containing hydrophilic/hydrophobic blocks with variable block mass ratios. The copolymers were evaluated for chemical composition, molar mass, and thermal properties, and they were used to prepare self-assemble aggregates in water from tetrahydrofuran polymer solutions. The combination of scattering light experiments and microscopy techniques revealed the spherical morphology of the aggregates with diameters around 180–200 nm, which comprises a hydrophobic PLA core and a hydrophilic polyether shell. The aggregates are nontoxic to human cervical cancer cell line — HeLa cells, as determined by MTS assay, and the aggregates are potential candidates to be applied in the encapsulation of hydrophobic compounds. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2203–2213  相似文献   

5.
Isotherms of monolayers of poly(ethylene oxide) (PEO) and polystyrene (PS) triblock copolymers spread at the air/water interface were obtained by film balance technique. In a low concentration regime, the PEO segments surrounding the PS cores behave the same way as in monolayers of PEO homopolymers. Langmuir-Blodgett (LB) films prepared by transferring the monolayers onto mica at various surface pressures were analyzed by atomic force microscopy (AFM). The results reveal that these block copolymers form micelles at the air/water interface. Within the micelles, the PS blocks act as anchoring structures at the interface. In several cases, aggregation patterns were modified by the dewetting processes that occur in Langmuir-Blodgett films transferred to solid substrates. High transfer surface pressures and metastable states favored these changes in morphology. A flowerlike surface micelle model is proposed to explain the organization of the surface circular micelles. The model can be generalized and applied to diblock copolymers as well. The model permits prediction of the aggregation number and the size of circular surface micelles formed by PEO/PS block copolymers at the air/water interface.  相似文献   

6.
Micellization of a poly(ethylene oxide)-block-poly(4-vinylpyridine) (PEO45-b-P4VP28) copolymer in water during metalation (incorporation of gold compounds and gold nanoparticle formation) with three types of gold compounds, NaAuCl4, HAuCl4, and AuCl3, was studied using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The transformations of the PEO45-b-P4VP28 block copolymer micelles in water were found to depend on a number of parameters including the thermal history of the as-prepared block copolymer, the type of the metal compound, and the metal loading. For the HAuCl4-filled PE045-b-P4VP28 micelles, the subsequent reduction with hydrazine hydrate results in a significant fraction of rodlike micelles, suggesting that slow nucleation (confirmed by the formation of the large gold nanoparticles) and facilitated migration of gold ions yields the ideal conditions for sphere-to-rod micellar transition.  相似文献   

7.
A number of tablet coatings are available to provide a controlled release of pharmaceutically active compounds in the stomach or intestine using both instant or sustained released systems. The preferred properties of these tablet coatings are a low solution viscosity (preferable in water) combined with a phase separated morphology, showing good mechanical properties. PEO-g-PVAl copolymers have been developed as an instant-release tablet coating, and were obtained via a conventional radical polymerisation of VAc in the presence of PEO. No free PEO was observed in the PEO-g-PVAl copolymers 1f and 1i using 2D LCCC-SEC and MALDI-TOF analysis. Next to the requirement of being PEO free, the PEO-g-PVAl copolymers show a good combination of film forming properties, a fast dissolution and a low solution viscosity in water. The phase separated morphology, as demonstrated by TEM, DSC, DMTA, and WAXS experiments, should provide the PEO-g-PVAl copolymers with relatively constant mechanical properties. A model reaction, using 2-methoxyethyl-ether and 1,4,7,10-tetraoxacyclododecane, has been developed to imitate the grafting reaction of VAc on PEO. Using this model reaction and using the same reaction conditions (temperature, initiator, concentration, VAc:“PEO” ratio, etc.) as applied in the PEO-g-PVAl polymerisation procedure, a degree of grafting for PEO of 13±3% was found. Comparing this figure with the results of LCCC-SEC and MALDI-TOF measurements, this figure seems a few percent too high, pointing to a slightly increased reactivity of the two model compounds compared to the PEO used.  相似文献   

8.
The present paper discusses block copolymers with segments of either poly(ethylene oxide), poly(propylene oxide), or mixtures of poly(ethylene oxide)/poly(propylene oxide) and monodisperse aramide segments. The length of the polyether segments as well as the concentration of polyethylene oxide was varied. The synthesized copolymers were analyzed by DSC, FTIR, AFM and DMTA. In addition, the hydrophilicity was studied.The crystallinity of the monodisperse aramide segments was found to be high and the crystals, dispersed in the polyether phase, displayed a nano-ribbon morphology. The PEO segments were able to crystallize and this crystalline phase reduced the low-temperature flexibility. The PEO crystallinity and melting temperature could be strongly reduced by copolymerization with PPO segments. By using mixtures of PEO and PPO segments, hydrophilic copolymers with decent low-temperature properties could be obtained.  相似文献   

9.
Amphiphilic poly(n‐butylene oxide)‐b‐poly(ethylene oxide) (PBO–PEO) diblock copolymers of various compositions were synthesized and studied as modifiers for epoxy resins. In blends of PBO–PEO, epoxy resin, and curing agent, the copolymers formed well‐defined microstructures that persisted upon curing of the epoxy. The resulting morphologies were vesicles, worm‐like micelles, and spherical micelles (in order of increasing size of PEO block), as well as transitional morphologies. Addition of 5% by weight of these block copolymers improved the fracture toughness of the epoxy by as much as 19 times with relatively small reduction in the elastic modulus. The highest level of toughness was measured in a system containing branched worm‐like micelles. Close examination of the fracture surfaces of these compositions suggests that although all the dispersed morphologies played a similar role to inclusions in particle‐toughened thermosets, crack deflection toughening contributed to the significantly higher levels of toughness in the worm‐like micelle systems. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Chem 43: 1950–1965, 2005  相似文献   

10.
Langmuir monolayers and Langmuir–Blodgett (LB) film morphology of amphiphilic triblock copolymers are studied using surface pressure-area measurements and atomic force microscopy (AFM), respectively. The triblock copolymers are composed of long water-soluble poly(ethylene oxide) (PEO) chains as middle block with very short poly(perfluorohexylethyl methacrylate) (PFMA) end blocks. The surface pressure-area isotherms show phase transitions in the brush regime. This phase transition is due to a rearrangement of PFMA block at the air–water interface. It becomes more significant with increasing PFMA content in the copolymer. LB films transferred at low surface pressures from the air–water interface to hydrophilic silicon substrates show surface micelles in the size range of 50–100 nm. A typical crystalline morphology of the corresponding PEO homopolymer is observed in LB films of copolymers with very short PFMA blocks, transferred in the brush region at high surface pressure. This crystallization is hindered with increasing PFMA content in the copolymer.  相似文献   

11.
A series of controllable amphiphilic block copolymers composed of poly(ethylene oxide) (PEO) as the hydrophilic block and poly(?-caprolactone) (PCL) as the hydrophobic block with the amino terminal group at the end of the PEO chain (PCL-b-PEO-NH2) were synthesized. Based on the further reaction of reactive amino groups, diblock copolymers with functional carboxyl groups (PCL-b-PEO-COOH) and functional compounds RGD (PCL-b-PEO-RGD) as well as the triblock copolymers with thermosensitive PNIPAAm blocks (PCL-b-PEO-b-PNIPAAM) were synthesized. The well-controlled structures of these copolymers with functional groups and blocks were characterized by gel permeation chromatography (GPC) and 1H NMR spectroscopy. These copolymers with functionalized hydrophilic blocks were fabricated into microspheres for the examination of biofunctions via cell culture experiments and in vitro drug release. The results indicated the significance of introducing functional groups (e.g., NH2, COOH and RGD) into the end of the hydrophilic block of amphiphilic block copolymers for biomedical potentials in tissue engineering and controlled drug release.  相似文献   

12.
Triblock copolymers made up of poly(ethylene oxide) (PEO) and polylactide (PLA) were synthesized and converted to fibers by the electrospinning process. A two‐step in situ‐synthesis in bulk was applied to extend PLA‐PEO‐PLA triblock copolymers with relatively short block length and low molecular weight in order to obtain electrospinnable materials. DL‐lactide was polymerized to the hydroxyl chain ends of PEO via the stannous octoate route. Hexamethylene diisocyanate (HDI) was added as chain extender in the second step, leading to poly(ether‐ester‐urethane) multiblock copolymers. The materials were electrospun from solutions in chloroform. Different concentrations and voltages were analyzed. The ether and ester blocks were varied in their block length and their effects on the fiber morphology was studied. Variations in the electrical conductivity of the chloroform solutions were investigated by adding triethyl benzyl ammonium chloride (TEBAC) in different amounts. Finally, with high quality electrospun PLA‐PEO‐PEO triblock copolymer fibers mechanical cutting was possible. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Small iron oxide and Co-doped iron oxide nanoparticles (NPs) were synthesized in a commercial amphiphilic block copolymer, poly(ethylene oxide)-b-poly(methacrylic acid) (PEO 68-b-PMAA8), in aqueous solutions. The structure and composition of the micelles containing guest molecules (metal salts) or NPs (metal oxides) were studied using transmission electron microscopy, dynamic light scattering, X-ray photoelectron spectroscopy, and X-ray powder diffraction. The enlarged micelle cores after incorporation of metal salts are believed to be formed by both PMAA blocks containing metal species and penetrating PEO chains. The nanoparticle size distributions in PEO 68-b-PMAA8 were determined using small-angle X-ray scattering (SAXS) in bulk. Two independent methods for SAXS data interpretation for comprehensive analysis of volume distributions of metal oxide NPs showed presence of both small particles and larger entities containing metal species which are ascribed to organization of block copolymer micelles in bulk. The magnetometry measurements revealed that the NPs are superparamagnetic and their characteristics depend on the method of the NP synthesis. The important advantage of the PEO 68-b-PMAA8 stabilized magnetic nanoparticles described in this paper is their remarkable solubility and stability in water and buffers.  相似文献   

14.
In this paper, we proposed a method to determine the nucleation effect of pre-existing crystals on crystallization of the second block in double crystalline block copolymers, which is usually covered by the suppression effect. The nucleation mechanism of poly(ethylene oxide) (PEO) block from the pre-crystallized polyethylene (PE) block in poly(ethylene-cobutene)-b-poly(ethylene glycol) (EmEOn) diblock copolymers was investigated under variable crystallization environments. The crystallization environment for the PEO block was altered by cooling at different cooling rates or successive selfnucleation (SSN) to the PE block. It was found that the presence of nucleation effect is strongly dependent on composition of the block copolymers. The crystallization temperature (Tc) of PEO block in E174EO90 increases as cooling rate applied to the PE block decreases, indicating that PE block can nucleate the crystallization of PEO block and more perfect PE crystals have stronger nucleation effect. In E182EO41 crystallization of the PEO block is confined, shown by the disappearance of selfnucleation domain, and the PE block has no nucleation effect on the crystallization of PEO block. Double crystallization peaks are observed for the PEO block in E182EO41 and the intensity of the crystallization peak at higher temperature increases as the PE crystals become more perfect. After exclusion of homogeneous nucleation mechanism, the higher temperature crystallization peak of the PEO block in E182EO41 is tentatively ascribed to surface nucleation.  相似文献   

15.
Dynamic moduli of fumed silica suspensions in aqueous solutions of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers and PEO homopolymers were measured as a function of surface coverage. Since the block copolymers and PEO are adsorbed on the silica surface through hydrogen bonding between the ether oxygen and the silanol group on the silica surface, the interaction between the silanol groups, which is dominant for the aggregation of silica particles, should be prohibited. Dynamic moduli in the silica suspensions were strongly related to the stability of the silica suspensions and the block copolymer, and the longest PEO portion was useful for stabilizing the silica particles. However, the PEO homopolymer did not support stability of the silica particles, suggesting that chain conformation of the PEO portion in the block copolymer is different from that for the PEO homopolymer. Copyright 2001 Academic Press.  相似文献   

16.
嵌段共聚物傅里叶变换拉曼光谱   总被引:3,自引:0,他引:3  
王靖  郭晨  刘会洲 《分析化学》2001,29(1):35-37
用傅里叶变换拉曼光谱(FT-Paman)研究了聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(PEO-PPO-PEO)嵌段共聚物的无水样品,发现某些谱带对PEO0-PPO-PEO嵌段共聚物的结构和构象变化敏感,其中某些峰的相对强度的PPO/PEO比率和共聚物的构象有关,研究表明PluronicF68和F88具有一些反式构象的螺旋结构,PluronicP103(P123)是无规则结构,其它的嵌段共聚物处于二者之间.  相似文献   

17.
Numerical self‐consistent field (SCF) lattice computations allow a priori determination of the equilibrium morphology and size of supramolecular structures originating from the self‐assembly of neutral block copolymers in selective solvents. The self‐assembly behavior of poly(ethylene oxide)‐block‐poly‐ε‐caprolactone (PEO‐PCL) block copolymers in water was studied as a function of the block composition, resulting in equilibrium structure and size diagrams. Guided by the theoretical SCF predictions, PEO‐PCL block copolymers of various compositions have been synthesized and assembled in water. The size and morphology of the resulting structures have been characterized by small‐angle X‐ray scattering, cryogenic transmission electron microscopy, and multiangle dynamic light scattering. The experimental results are consistent with the SCF computations. These findings show that SCF is applicable to build up roadmaps for amphiphilic polymers in solution, where control over size and shape are required, which is relevant, for instance, when designing spherical micelles for drug delivery systems © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 330–339  相似文献   

18.
The atom transfer radical polymerization of methyl methacrylate (MMA) and n‐butyl methacrylate (n‐BMA) was initiated by a poly(ethylene oxide) chloro telechelic macroinitiator synthesized by esterification of poly(ethylene oxide) (PEO) with 2‐chloro propionyl chloride. The polymerization, carried out in bulk at 90 °C and catalyzed by iron(II) chloride tetrahydrate in the presence of triphenylphosphine ligand (FeCl2 · 4H2O/PPh3), led to A–B–A amphiphilic triblock copolymers with MMA or n‐BMA as the A block and PEO as the B block. A kinetic study showed that the polymerization was first‐order with respect to the monomer concentration. Moreover, the experimental molecular weights of the block copolymers increased linearly with the monomer conversion, and the molecular weight distribution was acceptably narrow at the end of the reaction. These block copolymers turned out to be water‐soluble through the adjustment of the content of PEO blocks (PEO content >90% by mass). When the PEO content was small [monomer/macroinitiator molar ratio (M/I) = 300], the block copolymers were water‐insoluble and showed only one glass‐transition temperature. With an increase in the concentration of PEO (M/I = 100 or 50) in the copolymer, two glass transitions were detected, indicating phase separation. The macroinitiator and the corresponding triblock copolymers were characterized with Fourier transform infrared, proton nuclear magnetic resonance, size exclusion chromatography analysis, dynamic mechanical analysis, and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5049–5061, 2005  相似文献   

19.
Amphiphilic block copolymers,poly(ethylene oxide)-b-poly(N-acryloxysuccinimide) (PEO-b-PNAS) with various molecular weights have been successfully synthesized by atom transfer radical polymerization (ATRP) of NAS using functionalized PEO (PEO-Br) as ATRP macroinitiator.The self-assembling of the block copolymers in water,which is a good solvent for PEO and a non-solvent for PNAS.yielded spherical core-shell micelles with PNAS as core and PEO as shell.The cross-linked reaction of oxysuccinimide in PNAS ch...  相似文献   

20.
Block copolymers based on poly(ethylene oxide) (PEO) and poly(ethylene imine) (PEI) are efficient catalysts/templates for the formation of uniform silica nanoparticles. Addition of tetraethylorthosilicate to a solution of PEO–PEI or PEI–PEO–PEI block copolymers results in the formation of silica particles with a diameter of ca. 30 nm and narrow size distribution. The particles precipitated with the diblock copolymers can be redispersed in water after isolation as individual nanoparticles. Evidently, block copolymers based on PEO and PEI serve as excellent templates for the biomimetic and “soft” synthesis of silica nanoparticles.
Figure
TOC graphic  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号