首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The minimal energy configurations of hyperbolic bending vortex lines in the rotating trapped Bose-Einstein condensates are investigated by using a variational ansatz and numerical simulation. The theoretical calculation of the energy of the vortex lines as a function of the rotation frequency gives self-consistently vortex number, curvature and configuration. The numerical results show that bending is more stable than straight vortex line along the z-axis, and the vortex configuration in the xy-plane has a little expansion by increasing z.  相似文献   

2.
We create rapidly rotating Bose-Einstein condensates in the lowest Landau level by spinning up the condensates to rotation rates Omega > 99% of the centrifugal limit for a harmonically trapped gas, while reducing the number of atoms. As a consequence, the chemical potential drops below the cyclotron energy 2 variant Planck's over 2pi Omega. While in this mean-field quantum-Hall regime we still observe an ordered vortex lattice, its elastic shear strength is strongly reduced, as evidenced by the observed very low frequency of Tkachenko modes. Furthermore, the gas approaches the quasi-two-dimensional limit. The associated crossover from interacting- to ideal-gas behavior along the rotation axis results in a shift of the axial breathing mode frequency.  相似文献   

3.
We discuss the expansion dynamics under mean-field repulsion of an array of 87Rb Bose-Einstein condensates produced in an all-optical scheme involving 1D lattice with nearly 105 atoms, after fast evaporative cooling of just about 1 s. Single site occupation exceeds 2 × 104 in our experiments. The possibility of transition to two-dimensionality was also investigated. The expansion behavior of the high density multiple micro-condensates produced directly in the CO2 laser 1D optical lattice, with a lattice spacing of 5.3 μm, agrees well with a numerical simulation based on the mean-field theory.  相似文献   

4.
We study a rapidly rotating Bose-Einstein condensate in anharmonic confinement and find that many properties, such as the critical rotating frequency and phase diagram, are different from those in a harmonic trap. We investigate the phase transitions between various vortex lattices and find that a hole emerges in the center of the cloud when the rotating frequency Θ reaches Θh but it becomes invisible when Θ > 1.0842ω .  相似文献   

5.
The minimal energy configurations of finite Nv-body vortices in a rotating trapped Bose-Einstein condensate is studied analytically by extending the previous work [Y. Castin, R. Dum, Eur. Phys. J. D 7, 399 (1999)], and taking into account the finite size effects on z-direction and the bending of finite vortex lines. The calculation of the energy of the vortices as a function of the rotation frequency of the trap gives number, curvature, configuration of vortices and width of vortex cores self-consistently. The numerical results show that (1) the simplest regular polynomial of the several vortex configurations is energetically favored; while the hexagonal vortex lattice is more stable than square lattice; (2) bending is more stable then straight vortex line along the z-axis for λ<1; (3) the boundary effect is obvious: compared with the estimation made under infinite boundary, the finite size effect leads to a lower vortex density, while the adding vortex bending results in a less higher density because of the expansion. The results are in well agreement with the other authors' ones.  相似文献   

6.
We provide a simple physical picture of the loss of coherence between two coherently split one-dimensional Bose-Einstein condensates. The source of the dephasing is identified with nonlinear corrections to the elementary excitation energies in either of the two independent condensates. We retrieve the result by Burkov, Lukin and Demler [Phys. Rev. Lett. 98, 200404 (2007)] on the subexponential decay of the coherence ∝exp [-(t/t0)2/3] for the large time t, however, the scaling of t0 differs.  相似文献   

7.
We study the dynamics of Bose-Einstein condensates in an optical lattice and harmonic trap. The condensates are set in motion by displacing the trap and initially follow simple semiclassical paths, shaped by the lowest energy band. Above a critical displacement, the condensate undergoes Bragg reflection. For high atom densities, the first Bragg reflection generates a train of solitons and vortices, which destabilize the condensate and trigger explosive expansion. At lower densities, soliton and vortex formation requires multiple Bragg reflections, and damps the center-of-mass motion.  相似文献   

8.
The asymmetric patterns of superradiance from Bose-Einstein condensates are studied for the spatially inhomogeneous pump pulse with the semiclassical Maxwell-Schrodinger equations. The coupling dynamics between the optical field and condensate in the strong pulse and a faded wing in the weak coupling regime are discussed, which not only explain the spatial effects in the process of superradiance, but also supply a new method to control its patterns.  相似文献   

9.
For a modified Lennard-Jones interaction potential of the form ∼[(r0/r)2n-2-(r0/r)n], an exact and simple expression for the s-wave scattering length is presented, and discussed in some detail. For heavy alkali atoms, which nowadays are routinely being employed to produce Bose-Einstein condensates, this potential is well compatible with known experimental data when n = 6.  相似文献   

10.
With the imminent advent of mesoscopic rotating Bose-Einstein condensates in the lowest Landau level regime, we explore lowest Landau level vortex nucleation. An exact many-body analysis is presented in a weakly elliptical trap for up to 400 particles. Striking non-mean-field features are exposed at filling factors >1. For example, near the critical rotation frequency pairs of energy levels approach each other with exponential accuracy. A physical interpretation is provided by requantizing a mean-field theory, where 1/N plays the role of Planck's constant, revealing two vortices cooperatively tunneling between classically degenerate energy minima. The tunnel splitting variation is described in terms of frequency, particle number, and ellipticity.  相似文献   

11.
Nonadiabatic motion of Bose-Einstein condensates of rubidium atoms arising from the dynamical nature of a time-orbiting-potential (TOP) trap was observed experimentally. The orbital micromotion of the condensate in velocity space at the frequency of the rotating bias field of the TOP was detected by a time-of-flight method. A dependence of the equilibrium position of the atoms on the sense of rotation of the bias field was observed. We have compared our experimental findings with numerical simulations. The nonadiabatic following of the atomic spin in the trap rotating magnetic field produces geometric forces acting on the trapped atoms.  相似文献   

12.
The strongly interacting regime for attractive Bose-Einstein condensates (BECs) tightly confined in an extended cylindrical trap is studied. For appropriately prepared, non-collapsing BECs, the ensuing dynamics are found to be governed by the one-dimensional focusing Nonlinear Schrödinger equation (NLS) in the semiclassical (small dispersion) regime. In spite of the modulational instability of this regime, some mathematically rigorous results on the strong asymptotics of the semiclassical limiting solutions were obtained recently. Using these results, “implosion-like” and “explosion-like” events are predicted whereby an initial hump focuses into a sharp spike which then expands into rapid oscillations. Seemingly related behavior has been observed in three-dimensional experiments and models, where a BEC with a sufficient number of atoms undergoes collapse. The dynamical regimes studied here, however, are not predicted to undergo collapse. Instead, distinct, ordered structures, appearing after the “implosion”, yield interesting new observables that may be experimentally accessible.  相似文献   

13.

We consider theoretically the formation of vortex in rotating Bose-Einstein condensates (BECs) with higher order interaction (HOI). Our results are obtained from the twodimensional Gross-Pitaevskii equation. As the first step, for the certain number vortices, we discuss the ground state properties and show that the critical rotation frequency for HOI is smaller than those without HOI. As the increasing of HOI strength, the critical rotation frequency decreases. In addition, we verify that the Feynman rule is meet well. Moreover, we study the vortex dynamics.Numerical results indicate that the angular momentum remains almost unchanged irrespective of the HOI strength. The time taken for the nucleation of vortices pays less for strong HOI. These results suggest that the HOI is favorable to rotate the condensate, and this mechanism is useful to control the vortex number in BECs.

  相似文献   

14.
We discuss the dynamics of two weakly coupled Bose-Einstein condensates in a double-well potential, contrasting the mean-field picture to the exact N-particle evolution. On the mean-field level, a self-trapping transition occurs when the scaled interaction strength exceeds a critical value; this transition essentially persists in small condensates comprising about 1000 atoms. When the double-well is modulated periodically in time, Floquet-type solutions to the nonlinear Schr?dinger equation take over the role of the stationary mean-field states. These nonlinear Floquet states can be classified as “unbalanced” or “balanced”, depending on whether or not they entail long-time confinement of most particles to one well. Since the emergence of unbalanced Floquet states depends on the amplitude and frequency of the modulating force, we predict that the onset of self-trapping can efficiently be controlled by varying these parameters. This prediction is verified numerically by both mean-field and N-particle calculations. Received 5 November 2000 and Received in final form 16 February 2001  相似文献   

15.
We report the observation of vortex pinning in rotating gaseous Bose-Einstein condensates. Vortices are pinned to columnar pinning sites created by a corotating optical lattice superimposed on the rotating Bose-Einstein condensates. We study the effects of two types of optical lattice: triangular and square. In both geometries we see an orientation locking between the vortex and the optical lattices. At sufficient intensity the square optical lattice induces a structural crossover in the vortex lattice.  相似文献   

16.
We show that, in the Thomas-Fermi regime, the cores of vortices in rotating dilute Bose-Einstein condensates adjust in radius as the rotation velocity, Omega, grows, thus precluding a phase transition associated with core overlap at high vortex density. In both a harmonic trap and a rotating hard-walled bucket, the core size approaches a limiting fraction of the intervortex spacing. At large rotation speeds, a system confined in a bucket develops, within Thomas-Fermi, a hole along the rotation axis, and eventually makes a transition to a giant vortex state with all the vorticity contained in the hole.  相似文献   

17.
Li Wang 《中国物理 B》2021,30(11):110312-110312
The ground state properties of the rotating Bose-Einstein condensates (BECs) with SU(3) spin-orbit coupling (SOC) in a two-dimensional harmonic trap are studied. The results show that the ferromagnetic and antiferromagnetic systems present three half-skyrmion chains at an angle of 120° to each other along the coupling directions. With the enhancement of isotropic SU(3) SOC strength, the position of the three chains remains unchanged, in which the number of half-skyrmions increases gradually. With the increase of rotation frequency and atomic density-density interaction, the number of half-skyrmions on the three chains and in the regions between two chains increases gradually. The relationships of the total number of half-skyrmions on the three chains with the increase of SU(3) SOC strength, rotation frequency and atomic density-density interaction are also given. In addition, changing the anisotropic SU(3) SOC strength can regulate the number and morphology of the half-skyrmion chains.  相似文献   

18.
The study of quantum degenerate gases has received much interest in these last years essentially thanks to the extremely important experimental results of the achievement of Bose-Einstein condensation of atoms and, very recently, of almost complete degeneracy of atomic fermion gases. Here we want to present the results of a semi-analytical method for the study of an interacting degenerate fermion gas based on semiclassical kinetic theory; special care has been devoted to the study of a rotating electron gas, in a cylindrically symmetrical configuration, radially confined by a uniform magnetic field. The model will lead to a particular Thomas-Fermi equation which is generalized to take into account finite temperature and average velocity of the gas, and which is further developed to consider the effects of external fields. Received 10 March 2000  相似文献   

19.
In the framework of time-dependent two-dimensional Gross-Pitaevskii equation, we investigate the dynamics of vortex formation in rotating dipolar Bose-Einstein condensates in synthetic magnetic field (SMF) and compare with rotating frame (RF) method. The formation of vortices are calculated, considering effects of the rotational frequency, dipole strength, tilting angle and trap ratio. The results we found are that in SMF, the formation of steady state vortices is much slower than that in RF, and it is more difficult to add large angular momentum to the condensates than to do so in RF.  相似文献   

20.
Zai-Dong Li 《Annals of Physics》2007,322(8):1961-1971
We study the magnetic soliton dynamics of spinor Bose-Einstein condensates in an optical lattice which results in an effective Hamiltonian of anisotropic pseudospin chain. An equation of nonlinear Schrödinger type is derived and exact magnetic soliton solutions are obtained analytically by means of Hirota method. Our results show that the critical external field is needed for creating the magnetic soliton in spinor Bose-Einstein condensates. The soliton size, velocity and shape frequency can be controlled in practical experiment by adjusting the magnetic field. Moreover, the elastic collision of two solitons is investigated in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号