首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The purpose of this paper is to present and compare two statistical models for predicting the effect of collisions on particle velocities and stresses in bidisperse turbulent flows. These models start from a kinetic equation for the probability density function (PDF) of the particle velocity distribution in a homogeneous anisotropic turbulent flow. The kinetic equation describes simultaneously particle–turbulence and particle–particle interactions. The paper is focused on deriving the collision terms in the governing equations of the PDF moments. One of the collision models is based on a Grad-like expansion for the PDF of the velocity distributions of two particles. The other model stems from a Grad-like expansion for the joint fluid–particle PDF. The validity of these models is explored by comparing with Lagrangian simulations of particle tracking in uniformly sheared and isotropic turbulent flows generated by LES. Notwithstanding the fact that the fluid turbulence may be isotropic, the particle velocity fluctuations are anisotropic due to the impact of gravitational settling. Comparisons of the model predictions and the numerical simulations show encouraging agreement.  相似文献   

2.
This paper presents a review of authors' collective works in the field of two-phase flow modeling done in the past few decades. The paper is aimed at the construction of mathematical models for simulation of particle-laden turbulent flows. A kinetic equation was obtained for the probability density function (PDF) of the particle velocity distribution in turbulent flows. The proposed kinetic equation describes both the interaction of particles with turbulent eddies of the carrier phase and particle-particle collisions. This PDF equation is used for the derivation of different schemes describing turbulent momentum transfer in the dispersed particle phase. The turbulent characteristics of the gaseous phase are calculated on the basis of the k - turbulence model with a modulation effect of particles on the turbulence.

The constructed models have been applied to the calculation of various two-phase gas-particle turbulent flows in jets and channels as well as particle deposition in tubes and separators. For validating the theoretical and numerical results, a wide range of comparisons with experimental data from Russian and foreign sources has been done.  相似文献   


3.
Certain modifications of three-equation turbulence models are proposed. They are intended for increasing the accuracy of the calculations of turbulent flows in nozzles with boundary layer separation and in supersonic jets with complicated shock wave structures. Basing on the idea of the inclusion of flow prehistory in terms of an additional relaxation equation for nonequilibrium turbulent viscosity we propose three modifications of the k-ω t model based on the k-ω model and a version of the k- ? t turbulence model. In these modifications we introduce an additional dependence of the nonequilibrium turbulent viscosity relaxation time on different physical parameters which can be important near the point of boundary layer separation from the nozzle wall, such as viscous effects and effects of large gradients of the mean velocity and the kinetic energy of turbulence (turbulent pressure). The comparison of the results of the calculations with the experimental data shows that all the proposed versions of the three-equation models make it possible to improve the accuracy of the calculations of turbulent flows in nozzles and jets.  相似文献   

4.
A theoretical method based on mathematical physics formalism that allows transposition of turbulence modeling methods from URANS (unsteady Reynolds averaged Navier–Stokes) models, to multiple-scale models and large eddy simulations (LES) is presented. The method is based on the spectral Fourier transform of the dynamic equation of the two-point fluctuating velocity correlations with an extension to the case of non-homogenous turbulence. The resulting equation describes the evolution of the spectral velocity correlation tensor in wave vector space. Then, we show that the full wave number integration of the spectral equation allows one to recover usual one-point statistical closure whereas the partial integration based on spectrum splitting gives rise to partial integrated transport models (PITM). This latter approach, depending on the type of spectral partitioning used, can yield either a statistical multiple-scale model or subfilter transport models used in LES or hybrid methods, providing some appropriate approximations are made. Closure hypotheses underlying these models are then discussed by reference to physical considerations with emphasis on identification of tensorial fluxes that represent turbulent energy transfer or dissipation. Some experiments such as the homogeneous axisymmetric contraction, the decay of isotropic turbulence, the pulsed turbulent channel flow and a wall injection induced flow are then considered as typical possible applications for illustrating the potentials of these models.   相似文献   

5.
The strong mean shear in the vicinity of the boundaries in turbulent boundary layer flows preferentially amplifies a particular class of perturbations resulting in the appearance of coherent structures and in characteristic associated spatial and temporal velocity spectra. This enhanced response to certain perturbations can be traced to the nonnormality of the linearized dynamical operator through which transient growth arising in dynamical systems with asymptotically stable operators is expressed. This dynamical amplification process can be comprehensively probed by forcing the linearized operator associated with the boundary layer flow stochastically to obtain the statistically stationary response. In this work the spatial wave-number/temporal frequency spectra obtained by stochastically forcing the linearized model boundary layer operator associated with wall-bounded shear flow at large Reynolds number are compared with observations of boundary layer turbulence. The verisimilitude of the stochastically excited synthetic turbulence supports the identification of the underlying dynamics maintaining the turbulence with nonnormal perturbation growth. Received 30 January 1997 and accepted 27 March 1998  相似文献   

6.
7.
 Turbulence measurements are reported on the three-dimensional turbulent boundary layer along the centerline of the flat endwall in a 30° bend. Profiles of mean velocities and Reynolds stresses were obtained down to y +≈2 for the mean flow and y +≈8 for the turbulent stresses. Mean velocity data collapsed well on a simple law-of-the-wall based on the magnitude of the resultant velocity. The turbulence intensity and turbulent shear stress magnitude both increased with increased three-dimensionality. The ratio of these two quantities, the a 1 structure parameter, decreased in the central regions of the boundary layer and showed profile similarity for y +<50. The shear stress vector angle lagged behind the velocity gradient vector angle in the outer region of the boundary layer, however there was an indication that the shear stress vector tends to lead the velocity gradient vector close to the wall. Received: 16 July 1996/Accepted: 14 July 1997  相似文献   

8.
The study of the characteristics of the turbulence in the boundary layer and in free jets is one of the most important problems of the aerodynamics of viscous fluids. The accumulation of information on the pulsation characteristics of jet flows and the establishment of the corresponding governing laws may serve to verify the basic hypotheses of the semiempirical theories of turbulence, and also for the development of more advanced computational methods. In many cases the measurement of the pulsation characteristics of turbulent jets is of practical interest.The studies made up till now [1–5] of the microstructure of turbulent flow in the primary region of submerged axisymmetric jets have made it possible to obtain several interesting results. In particular, in addition to the average velocity profiles, hot-wire anemometric equipment has been used to measure the normal and tangential Reynolds stresses and also the intermittency factor in cross sections of the jet, the distribution of the intensity of the longitudinal and lateral velocity pulsations along the axis, the correlation coefficients and the corresponding integral turbulence scales, etc. These measurements have made it possible to draw several important conclusions on the mechanism of turbulent exchange, on the order of the terms omitted in the equation of motion, and on the semiempirical theories of turbulence [6–9].The common deficiency of the studies mentioned above is that near the boundary of a submerged jet, where the average velocity is practically equal to zero, the intensity of the pulsations is so great that it makes the reliability of the results obtained by means of the hotwire anemometer questionable. In this connection Townsend [6] indicated the advisability of studying the microstructure of a turbulent jet issuing into a low-velocity ambient flow.The present study had as its objective the investigation of the microstructure of the primary region of an axisymmetric jet in a wake flow over quite a broad range of the flow ratio parameter m=u/u0;here u0 is the average velocity at the nozzle exit, u is the velocity of the ambient stream. For various values of the parameter m in the primary region of the jet measurements were made of the profiles of the three components of the pulsation velocity and the Reynolds shear stresses, and also the values of the average velocity and two components of the pulsation velocity at a large number of points on the jet axis. The measured profiles of the Reynolds shear stresses were compared with the corresponding profiles calculated on the basis of the boundary layer equations from the experimentally determined average velocity profiles. For two values of the parameter m, in one of the sections of the jet measurements were made of the correlation coefficients of the longitudinal components of the pulsation velocity and the variation across the jet of the integral turbulence scale was determined.The results obtained give an idea of the influence of the parameter m on the characteristics of the turbulent jet in an ambient stream.  相似文献   

9.
This paper describes the application of the Eulerian, single-point, single-time joint-scalar probability density function (PDF) equation for predicting the scalar transport in mixing layer with a high-speed and a low-speed stream. A finite-volume procedure is applied to obtain the velocity field with the k-ε closure being used to describe turbulent transport. The scalar field is represented through the modelled evolution equation for the scalar PDF and is solved using a Monte Carlo simulation. The PDF equation employs gradient transport modelling to represent the turbulent diffusion, and the molecular mixing term is modelled by the LMSE closure. There is no source term for chemical reaction as only an inert mixing layer is considered here. The experimental shear layer data published by Batt is used to validate the computational results despite the fact that comparisons between experiments and computational results are difficult because of the high sensitivity of the shear layer to initial conditions and free stream turbulence phenomena. However, the bimodal shape of the RMS scalar fluctuation as was measured by Batt can be reproduced with this model, whereas standard gradient diffusion calculations do not predict the dip in this profile. In this work for the first time an explanation is given for this phenomenon and the importance of a micromixing model is stressed. Also it is shown that the prediction of the PDF shape by the LMSE model is very satisfactory. Received on 27 October 1998  相似文献   

10.
Turbulent opposed jet burners are an excellent test case for combustion research and model development due to the burners’ compactness, relative simplicity, and the good optical access they provide. The flow-field in the flame region depends strongly on the turbulence generation inside the nozzles, so that realistic flow simulations can only be achieved if the flow inside the nozzles is represented correctly, which must be verified by comparison to suitable experimental data. This paper presents detailed particle image velocimetry (PIV) measurements of the flow issuing from the turbulence generating plates (TGP) inside a glass nozzle. The resulting data is analyzed in terms of first and second moments, time-series, frequency spectra and phase averages. The measurements show how individual high velocity jets emerging from the TGP interact and recirculation zones are formed behind the solid parts of the TGP. Vortex shedding is observed in the jet’s shear layer were high levels of turbulent kinetic energy are generated. Time series measurements revealed periodic pulsations of the individual jets and implied a coupling between adjacent jets. The peak frequencies were found to be a function of the Reynolds-number.  相似文献   

11.
The suitability of Wilcox's 2006 kω turbulence model for scramjet flowfield simulations is demonstrated by validation against five test cases that have flowfields representative of those to be expected in scramjets. The five test cases include a 2D flat plate, an axisymmetric cylinder, a backward‐facing step, the mixing of a pair of coaxial jets and the interaction between a shock wave and turbulent boundary layer. A generally good agreement between the numerical and experimental results is obtained for all test cases. These tests reveal that despite the turbulence model's sensitivity to freestream turbulence properties, the numerically predicted skin friction agrees with experimental data and theoretical correlations to their degree of uncertainty. The tests also confirm the importance of using a y+ value of less than 1 in getting accurate surface heat transfer distributions. In the coaxial jets case, the importance of matching the turbulence intensities at the inflow plane in improving the predictions of the turbulent mixing phenomena is also shown. A review of guidelines with regard to the setting up of grids and specification of freestream turbulence properties for turbulent Reynolds‐averaged Navier–Stokes CFD simulations is also included in this paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The paper reports on particle image velocimetry (PIV) measurements in turbulent slot jets bounded by two solid walls with the separation distance smaller than the jet width (5–40%). In the far-field such jets are known to manifest features of quasi-two dimensional, two component turbulence. Stereoscopic and tomographic PIV systems were used to analyse local flows. Proper orthogonal decomposition (POD) was applied to extract coherent modes of the velocity fluctuations. The measurements were performed both in the initial region close to the nozzle exit and in the far fields of the developed turbulent slot jets for Re  10,000. A POD analysis in the initial region indicates a correlation between quasi-2D vortices rolled-up in the shear layer and local flows in cross-stream planes. While the near-field turbulence shows full 3D features, the wall-normal velocity fluctuations day out gradually due to strong wall-damping resulting in an almost two-component turbulence. On the other hand, the longitudinal vortex rolls take over to act as the main agents in wall-normal and spanwise mixing and momentum transfer. The quantitative analysis indicates that the jet meandering amplitude was aperiodically modulated when arrangement of the large-scale quasi-2D vortices changed between asymmetric and symmetric pattern relatively to the jet axis. The paper shows that the dynamics of turbulent slot jets are more complex than those of 2D, plane and rectangular 3D jets. In particular, the detected secondary longitudinal vortex filaments and meandering modulation is expected to be important for turbulent transport and mixing in slot jets. This issue requires further investigations.  相似文献   

13.
14.
The influence of compressibility on the rapid pressure–strain rate tensor is investigated using the Green’s function for the wave equation governing pressure fluctuations in compressible homogeneous shear flow. The solution for the Green’s function is obtained as a combination of parabolic cylinder functions; it is oscillatory with monotonically increasing frequency and decreasing amplitude at large times, and anisotropic in wave-vector space. The Green’s function depends explicitly on the turbulent Mach number M t , given by the root mean square turbulent velocity fluctuations divided by the speed of sound, and the gradient Mach number M g , which is the mean shear rate times the transverse integral scale of the turbulence divided by the speed of sound. Assuming a form for the temporal decorrelation of velocity fluctuations brought about by the turbulence, the rapid pressure–strain rate tensor is expressed exactly in terms of the energy (or Reynolds stress) spectrum tensor and the time integral of the Green’s function times a decaying exponential. A model for the energy spectrum tensor linear in Reynolds stress anisotropies and in mean shear is assumed for closure. The expression for the rapid pressure–strain correlation is evaluated using parameters applicable to a mixing layer and a boundary layer. It is found that for the same range of M t there is a large reduction of the pressure–strain correlation in the mixing layer but not in the boundary layer. Implications for compressible turbulence modeling are also explored.   相似文献   

15.
According to the hypothesis that the dissipation of turbulent kinetic energy satisfies log-normal distribution, a stochastic model of dissipation is provided and the Langevin model[6] of velocity is modified. Then a joint Pdf equation of turbulent velocity and dissipation is derived. We solve numerically the joint Pdf equation using Monte Carlo method and obtain satisfactory results for decaying turbulence and homogeneous turbulent shear flow. The preliminary results show that the model is well working.  相似文献   

16.
Spanwise space–time correlations of the wall shear stress and the longitudinal velocity fluctuations in the low buffer layer of an unsteady channel flow are reported. The imposed amplitude is 20% of the centerline velocity and the imposed frequency covers a large range going from the quasi-steady limit to the bursting frequency of the corresponding steady flow. The unsteady spanwise correlation coefficient is investigated both through its own modulation characteristics (amplitude and phase shifts) and those of the resulting streak spacing. A good correspondence is found between the modulation of the streak spacing and that of the ejection period. The data is further analyzed by temporal filtering of the wall shear stress and streamwise velocity fluctuations. It is shown that the large outer-layer structures play a “passive” role in the unsteady response of the near wall turbulence. The inner wall eddies, in return, are amply responsible for the unsteady reaction of both the turbulent wall shear stress and the streamwise velocity intensities in the buffer layer.  相似文献   

17.
Two transported PDF strategies, joint velocity-scalar PDF (JVSPDF) and joint scalar PDF (JSPDF), are investigated for bluff-body stabilized jet-type turbulent diffusion flames with a variable degree of turbulence–chemistry interaction. Chemistry is modeled by means of the novel reaction-diffusion manifold (REDIM) technique. A detailed chemistry mechanism is reduced, including diffusion effects, with N 2 and CO 2 mass fractions as reduced coordinates. The second-moment closure RANS turbulence model and the modified Curl’s micro-mixing model are not varied. Radiative heat loss effects are ignored. The results for mean velocity and velocity fluctuations in physical space are very similar for both PDF methods. They agree well with experimental data up to the neck zone. Each of the two PDF approaches implies a different closure for the velocity-scalar correlation. This leads to differences in the radial profiles in physical space of mean scalars and mixture fraction variance, due to different scalar flux modeling. Differences are visible in mean mixture fraction and mean temperature, as well as in mixture fraction variance. In principle, the JVSPDF simulations can be closer to physical reality, as a differential model is implied for the scalar fluxes, whereas the gradient diffusion hypothesis is implied in JSPDF simulations. Yet, in JSPDF simulations, turbulent diffusion can be tuned by means of the turbulent Schmidt number. In the neck zone, where the turbulent flow field results deteriorate, the joint scalar PDF results are in somewhat better agreement with experimental data, for the test cases considered. In composition space, where results are reported as scatter plots, differences between the two PDF strategies are small in the calculations at hand, with a little more local extinction in the joint scalar PDF results.  相似文献   

18.
In the present study, inhomogeneous plane harmonic waves propagation in dissipative partially saturated soils are investigated. The analytical model for the dissipative partially saturated soils is solved in terms of Christoffel equations. These Christoffel equations yields the existence of four wave (three longitudinal and one shear) modes in partially saturated soils. Christoffel equations are further solved to determine the complex velocities and polarizations of four wave modes. Inhomogeneous propagation is considered through a particular specification of complex slowness vector. A finite non-dimensional inhomogeneity parameter is considered to represent the inhomogeneous nature of these four waves. Impact of tortuosity parameter on the movement of pore fluids is considered. Hence, the considered model is capable of describing the wave behavior at high as well as mid and low frequencies. Numerical example is considered to study the effects of inhomogeneity parameter, saturation of water, porosity, permeability, viscosity of fluid phase and wave frequency on the velocity and attenuation of four waves. It is observed that all the waves are dispersive in nature (i.e., frequency dependent).  相似文献   

19.
Laser Doppler velocity measurements are carried out in a turbulent boundary layer subjected to concentrated wall suction (through a porous strip). The measurements are taken over a longitudinal distance of 9× the incoming boundary layer thickness ahead of the suction strip. The mean and rms velocity profiles are affected substantially by suction. Two-point measurements show that the streamwise and wall-normal autocorrelations of the streamwise velocity are reduced by suction. It is found that suction alters the redistribution of the turbulent kinetic energy k between its components. Relative to the no-suction case, the longitudinal Reynolds stress contributes more to k than the other two normal Reynolds stresses; in the outer region, its contribution is reduced which suggests structural changes in the boundary layer. This is observed in the anisotropy of the Reynolds stresses, which depart from the non-disturbed boundary layer. With suction, the anisotropy level in the near-wall region appears to be stronger than that of the undisturbed layer. It is argued that the mean shear induced by suction on the flow is responsible for the alteration of the anisotropy. The variation of the anisotropy of the layer will make the development of a turbulence model quite difficult for the flow behind suction. In that respect, a turbulence model will need to reproduce well the effects of suction on the boundary layer, if the model is to capture the effect of suction on the anisotropy of the Reynolds stresses.  相似文献   

20.
The near field mean flow and turbulence characteristics of a turbulent jet of air issuing from a sharp-edged isosceles triangular orifice into still air surroundings have been examined experimentally using hot-wire anemometry and a pitot-static tube. For comparison, some measurements were made in an equilateral triangular free jet and in a round free air jet, both of which also issued from sharp-edged orifices. The Reynolds number, based on the orifice equivalent diameter, was 1.84×105 in each jet. The three components of the mean velocity vector, the Reynolds normal and primary shear stresses, the one-dimensional energy spectra of the streamwise fluctuating velocity signals and the mean static pressure were measured. The mean streamwise vorticity, the half-velocity widths, the turbulence kinetic energy and the local shear in the mean streamwise velocity were obtained from the measured data. It was found that near field mixing in the equilateral triangular jet is faster than in the isosceles triangular and round jets. The mean streamwise vorticity field was found to be dominated by counter-rotating pairs of vortices, which influenced mixing and entrainment in the isosceles triangular jet. The one-dimensional energy spectra results indicated the presence of coherent structures in the near field of all three jets and that the equilateral triangular jet was more energetic than the isosceles triangular and round jets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号