首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
刘家祥  欧龙  勇昕 《无机化学学报》2014,30(5):1068-1072
本文以轻烧白云石粉料为原料,用碳化法制备出碱式碳酸镁,酸化后以氨水为沉淀剂,用化学沉淀法制得Mg(OH)2,用乙二胺对制得的Mg(OH)2进行后处理,制得纤维状纳米Mg(OH)2。用SEM、XRD和TG-DTA对制得的Mg(OH)2进行表征。XRD结果表明重结晶温度180℃以上可以得到具有完整晶体结构的Mg(OH)2。SEM结果显示Mg(OH)2颗粒的尺寸随着乙二胺加入量的增大而增大。当Mg(OH)2的重结晶时间超过21 h后,可以得到直径20~30 nm,长度400~700 nm的纤维状Mg(OH)2。TG-DTA表明Mg(OH)2在318~416℃分解为MgO。  相似文献   

2.
利用水热法,制备得到了纳米线组装的绒球状和纳米带聚集的絮状Mg BO2(OH):Eu3+,对它们进行了EDS、XRD、IR、SEM等表征及发光性能研究。研究发现两个产品的最高激发峰和发射峰分别都位于λ=250nm和λ=615nm处,为红色发光材料;且发现绒球状Mg BO2(OH):Eu3+的峰强度明显强于絮状Mg BO2(OH):Eu3+,但絮状Mg BO2(OH):Eu3+的红橙比(R/O)更高。  相似文献   

3.
无模板剂液相合成Ni(OH)2花状微球   总被引:2,自引:0,他引:2  
采用一种简单的无模板剂液相合成方法制备了Ni(OH)2花状微球. 该Ni(OH)2花状微球由几十个相互连接的纳米片组成, 为α-Ni(OH)2和β-Ni(OH)2的混合晶型. 当溶液的其它条件固定时, Ni(OH)2花状微球的微观形貌随Ni(Ⅱ)浓度的变化而显著变化. 当溶液中Ni(Ⅱ)浓度为0.03 mol/L时, 花状微球粒径分布较均匀, 平均粒径约为2 μm, 微球由花瓣长度约为400 nm、厚度约为60 nm的纳米片花瓣组成. 通过观察反应过程中Ni(OH)2花状微球的微观形貌的变化, 提出了Ni(OH)2花状微球的纳米团聚-表面生长-表面溶解的形成机制.  相似文献   

4.
以NH3·H2O和NaOH作为沉淀剂,通过水热方法在180℃,L-脯氨酸作用下,分别合成出了β-Ni(OH)2花球和纳米三角片。XRD结果表明合成出的β-Ni(OH)2产物是六方相,透射电镜(TEM)和场发射电镜(FESEM)表明花球直径为1~2μm,它是由厚15nm,边长110nm的三角片自组装形成的。对相应的β-Ni(OH)2前驱物在350℃空气下退火2h,分别得到NiO花球和纳米三角片。  相似文献   

5.
采用简单的相转化方法合成出直径为20~30 nm、长度为几微米的β-Ni(OH)_2纳米线.利用XRD和FESEM表征了样品的结构和形貌,并采用循环伏安法、恒流充放电和交流阻抗谱等测试了样品的电化学性能.结果表明,在氢氧化钠溶液中,水热时间为30 min时,Paraotwayite型α-Ni(OH)_2纳米线转化为β-Ni(OH)_2纳米线.在不同扫描速率下,电极材料α-Ni(OH)_2和β-Ni(OH)_2纳米线的可逆性和倍率性能均优于β-Ni(OH)_2纳米片.  相似文献   

6.
氢氧化镁分解动力学的研究   总被引:1,自引:0,他引:1  
以硼泥为原料与硫酸反应制备出七水硫酸镁,以氢氧化钠为沉淀剂制备出符合标准HG/T 3607-2000的氢氧化镁.利用XRD,SEM和TEM对氢氧化镁进行了表征,DTA-TG对氢氧化镁的热分解动力学进行了研究.XRD结果表明:制备粉体为单一Mg(OH)2.SEM和TEM结果表明:样品为片状或针状纤维,片直径大小不一,在20~50 nm之间,针状纤维形状不规则,大小不一致,长度在20~100 nm之间.利用Kissinger法和Ozawa法计算出的氢氧化镁热分解反应活化能分别为135.14和141.61 kJ·mol-1.利用Coats-Redfern法和Dolye法判断氢氧化镁热分解反应机理函数为A1.5.  相似文献   

7.
采用超声沉淀法从In(NO3)3制备出了In(OH)3纳米晶体, 发现其在254 nm紫外光照射下对苯催化活性和活性稳定性比P25-TiO2高得多.  相似文献   

8.
以CuSO4.5H2O和NaOH为原料,采用沉淀法制备得到Cu(OH)2纤维,再进行Cu(OH)2的分解反应.考察了在不同实验条件下温度对Cu(OH)2热分解过程的影响.结果表明:在反应温度20℃,反应终点pH值为12,搅拌速度为1 200 r.min-1,NaOH溶液的滴加速度为50 mL.min-1的反应条件下,得到的样品为纳米Cu(OH)2纤维,其直径为10~30 nm、长度为1~6μm;在固相纳米Cu(OH)2热分解制备CuO过程中CuO粒径随温度的升高而增大,在温度不超过200℃时CuO的粒径约为20 nm左右;在液相中先沉淀后升温时,产物的形貌为球形,CuO粒径随温度的升高而增大,低于80℃可得到纳米级的CuO.  相似文献   

9.
配位-均匀沉淀法合成Cd(OH)2和CdO纳米带   总被引:1,自引:0,他引:1  
以硝酸镉为前驱物、氨水(25-28 wt%)为沉淀剂,在无模板的条件下,采用配位-均匀沉淀法成功地合成了Cd(OH)2纳米带。将Cd(OH)2纳米带在350℃下煅烧4 h得到形貌相似的CdO半导体纳米材料。X-射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、电子衍射(SAED)等测试结果表明,所制备的Cd(OH)2纳米带是由尺寸约25 nm的Cd(OH)2纳米粒子组成,其宽度为100-200 nm、长度达1.5 um、厚度约为30 nm;Cd(OH)2为六方晶系结构;CdO纳米带由更小的CdO纳米粒子组成,CdO为面心立方晶型。本文还初步探讨了Cd(OH)2纳米带的形成过程。  相似文献   

10.
采用水热法制备了富含(001)晶面的锐钛矿型TiO2纳米片,并通过改变热处理过程中NH3流速制备不同N掺杂浓度的TiO2纳米片.运用X射线衍射、场发射扫描电镜、高分辨率透射电子显微镜、紫外-可见漫反射光谱、X射线光电子能谱和荧光光谱对光催化剂进行了结构和性能表征,并以罗丹明B为目标降解物,考察了N掺杂浓度对TiO2纳米片可见光催化活性的影响.结果表明,NH3流速为40ml/min时制备的N掺杂TiO2纳米片具有最低的光生电子-空穴复合速率,最高的OH产生能力并表现出最高的光催化活性.同时,讨论了N掺杂浓度对TiO纳米片可见光催化活性影响的机理.  相似文献   

11.
棒状氢氧化镁的合成   总被引:3,自引:2,他引:1  
以氯化镁和氢氧化钠为原料合成了棒状氢氧化镁粉体。考察了氢氧化钠浓度、陈化温度、陈化时间对氢氧化镁形貌的影响。采用SEM、HRTEM、XRD、TG等对所得氢氧化镁颗粒的形貌、颗粒大小、晶习及热稳定性进行了表征。结果表明,当陈化温度为90℃时,所得棒状氢氧化镁随氢氧化钠浓度的升高及陈化时间的增加,晶形更加完整;当陈化温度在120℃时,所得氢氧化镁颗粒的形貌为片状,不能得到棒状氢氧化镁。  相似文献   

12.
Well-dispersed magnesium hydroxide nanoplatelets were synthesized by a simple water-in-oil (w/o) microemulsion process, blowing gaseous ammonia (NH(3)) into microemulsion zones solubilized by magnesium chloride solution (MgCl(2)). Typical quaternary microemulsions of Triton X-100/cyclohexane/n-hexanol/water were used as space-confining microreactors for the nucleation, growth, and crystallization of magnesium hydroxide nanoparticles. The obtained magnesium hydroxide was characterized by field-emission scanning electron microscopy (FESEM), high-resolution transmission election microscopy (HRTEM), X-ray powder diffraction (XRD), laser light scattering, Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis-differential scanning calorimetry (TGA-DSC). The mole ratio of water to surfactant (omega(0)) played an important role in the sizes of micelles and nanoparticles, increasing with the increase of omega(0). The compatibility and dispersibility of nanoparticles obtained from reverse micelles were improved in the organic phase.  相似文献   

13.
以氯化镁和氢氧化铵为原料,采用气体扩散技术制备了垂直排列氢氧化镁纳米薄片。利用场发射扫描电子显微镜(FE-SEM)、X射线衍射(XRD)、红外光谱(IR)以及差热分析(DTA)等分析测试技术研究了纳米氢氧化镁薄片的形貌、结构、成分以及热稳定性和比表面积等,结果表明,纳米氢氧化镁薄片的生长是一个成核-生长-组装过程,随着生长时间的延长,形貌从二维紧凑型结构演变成三维花状超结构,反应过程中液体-晶体和液-气界面的自由能作用使得纳米薄片趋向于垂直排列。此外,氢氧化镁纳米薄片薄膜的疏水性能也进行了研究。  相似文献   

14.
The nanobelt formation of magnesium hydroxide sulfate hydrate (MHSH) via a soft chemistry approach using carbonate salt and magnesium sulfate as reactants was successfully demonstrated. X-ray diffraction (XRD), energy dispersion X-ray spectra (EDS), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis revealed that the MHSH nanobelts possessed a thin belt structure (approximately 50 nm in thickness) and a rectangular cross profile (approximately 200 nm in width). The MHSH nanobelts suffered decomposition under electron beam irradiation during TEM observation and formed MgO with the pristine nanobelt morphology preserved. The formation process of the MHSH nanobelts was studied by tracking the morphology of the MHSH nanobelts during the reaction. A possible chemical reaction mechanism is proposed.  相似文献   

15.
丙三醇-变频微波-水热法制备氢氧化镁晶须   总被引:5,自引:0,他引:5  
以MgCl2·6H2O和NaOH为原料, 采用丙三醇-变频微波-水热法制备了优质氢氧化镁晶须. 采用XRD, SEM和TEM进行了物相、粒度、晶体形貌和结构分析. 考察了丙三醇-变频微波-水热法工艺对氢氧化镁晶须晶形、结构及分散性的影响. 实验发现, 在水热反应体系中加入体积分数为15%的丙三醇, 用变频微波加热, 在180 ℃反应6 h, 可获得粒度分布均匀、晶形和分散性好、表面光滑及缺陷少的优质氢氧化镁晶须. 在透射电镜下估算晶须直径约为0.1~0.3 μm, 长度约为80~110 um. 初步分析了变频微波和丙三醇对氢氧化镁晶须生长的作用.  相似文献   

16.
微乳液中球形及棒状SrTiO3纳米粒子的控制合成   总被引:4,自引:0,他引:4  
朱启安  龚敏  陈万平  张超  孙旭峰  王树峰 《化学学报》2007,65(14):1389-1393
以氢氧化锶和钛酸四丁酯为原料, 在水溶液/Triton X-100/环己烷/正己醇反相微乳液体系中制备了直径约为20~80 nm的钛酸锶球形纳米粒子和长约300~1200 nm、直径约为30~150 nm的钛酸锶纳米棒. 用XRD, ICP, TEM, SAED和SEM对样品的结构、成分和形貌进行了表征; 用DLS分析了样品的粒度分布. 结果显示, 水与表面活性剂的物质的量比(ω0)、反应物浓度、陈化时间等因素都能影响钛酸锶纳米粒子的形貌和尺寸. 所得钛酸锶的锶钛物质的量比约为1.0, 粒度分布较窄, 为立方相单晶结构.  相似文献   

17.
Bi2Fe4O9纳米粉体:水热法制备及表征   总被引:1,自引:1,他引:0  
Bi2Fe4O9 nanoparticles were prepared at low temperature via a facile, one-step hydrothermal synthesis process using iron(Ⅲ) nitrate nonahydrate(Fe(NO3)3·9H2O) and bismuth nitrate pentahydrate (Bi(NO3)3·5H2O) as starting materials and sodium hydroxide (NaOH) as the precipitant and mineralizer. XRD results indicate that the as-prepared nanoparticles are pure Bi2Fe4O9. SEM images reveal that the as-prepared Bi2Fe4O9 nanoparticles have a sheet-like morphology. The Bi2Fe4O9 nanoparticles thus obtained are paramagnetic at room temperature as shown by magnetic measurements.  相似文献   

18.
In this work, we demonstrate an in situ phase conversion from basic magnesium chloride(BMC) into magnesium hydroxide whisker by using polar organic solvent at low temperature. The morphology and phase composition of magnesium hydroxide whiskers prepared at different reaction temperature, alkali concentration and organic solvent were analyzed by X-ray diffraction(XRD) and scanning electronic microscope(SEM). It was found that when one of the organic solvents such as absolute ethyl alcohol, butanol, polyethylene glycol(PEG-400), acetone, et al. was selected as the template, the precursor BMC can transform into whisker-like magnesium hydroxide through precipitate transformation in low temperature and non-hydrothermal system. It can be reasonably explained that the regulation of Mg^2+ solubility by those organic solvents and the sustained release of Mg^2+ dissolution by organic adsorption played a significant role in the formation of magnesium hydroxide whisker via BMC whisker as the precursor.  相似文献   

19.
卢启芳  刘素文 《无机化学学报》2011,27(10):2066-2070
以五氧化二铌(Nb2O5)和氧化镁(MgO)为原料,柠檬酸作配位剂,采用静电纺丝结合溶胶-凝胶法制备了铌酸镁(MgNb2O6)陶瓷纤维。在本合成体系中,高质量Nb5+溶液的获得是形成MgNb2O6前驱体溶胶的关键步骤。通过TGA,FTIR,XRD,TEM以及SEM技术对纤维的形貌,微观结构以及组成进行了表征。结果表明,900℃烧结以后得到的MgNb2O6纤维长度约为10 cm,具有中空结构,壁厚约为800 nm。  相似文献   

20.
以氯化镁焙烧生成的氧化镁为原料,采用两步法即先水化后水热的方法制备出六方片状氢氧化镁。考察了水化时间、水热时间和温度及水热添加剂氢氧化钠浓度对氢氧化镁材料形貌的影响。研究表明,水化时间超过3 h,氧化镁水化率基本不变,水热温度越高对晶体形貌改善越大,水热时间的延长可促进晶体粒径及厚度的增加,但是对晶体的宽厚比改变不大。水热添加剂氢氧化钠浓度的增加可明显地提高晶体结晶度,减小晶体微观内应变,提高粉体分散性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号