首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heterogeneous condensation of water vapor on nanoparticles and the growth of formed droplets are numerically studied under conditions of laminar diffusion chamber (LDC) of a new type with a hot porous wall. The main attention is focused on the growth of heterogeneous droplets in the gas flow at high number densities of nanoparticles exceeding 108 droplet/m3. Under these conditions, there is an interrelation between the growth of droplets and processes of heat and mass transfer in LDC due to vapor depletion and the release of latent heat of phase transition on growing droplets. The efficiency of the coverage of nanoparticles with water film is studied under LDC nonuniform conditions. It is shown that, at initial number densities of nanoparticles (N d > 1011 droplet/m3), heterogeneous droplets do not grow to optically detected sizes.  相似文献   

2.
A multi-component microfluidic electrochemical cell is shown to be a useful analytical tool for probing complex coupled processes in electrolytic systems. We recently reported an enzymatic signal amplification phenomenon that may provide increased sensitivity when detecting bio-analytes (M. S. Hasenbank, E. Fu and P. Yager, Langmuir, 2006, 22, 7451-7453), but to fully harness this method requires an improved understanding of the underlying electrochemical and chemical processes. We use spatial control of electrolyte streams on patterned conductive substrates in a microfluidic platform to elucidate the coupling of homogeneous chemical steps to heterogeneous electrochemical charge transfer processes. Because the gold surface was observable using SPR imaging, electrochemical phenomena could be monitored optically in real time. Based on these and additional results, we propose a mechanism for the novel amplification phenomenon that involves direct electron transfer between surface-immobilized enzyme molecules and the gold surface. This improved understanding of the underlying mechanism should enable the future implementation of this phenomenon in signal amplification schemes for highly sensitive lab-on-a-chip biosensors.  相似文献   

3.
Nucleation rate isotherms of n-butanol, n-pentanol, n-hexanol, n-heptanol, and n-octanol were measured in a laminar flow diffusion chamber using helium as carrier gas. The measurements were made at 250-310 K, corresponding to reduced temperatures of 0.43-0.50, and at atmospheric pressure. Experimental nucleation rate range was from 10(3) to 10(7) cm(-3) s(-1). The expression and accuracy of thermodynamic parameters, in particular equilibrium vapor pressure, were found to have a significant effect on calculated nucleation rates. The results were compared to the classical nucleation theory (CNT), the self-consistency corrected classical theory (SCC) and the Hale's scaled model of the CNT. The average ratio between the experimental and theoretical nucleation rates for all alcohols used was 1.5x10(3) when the CNT was used, and 0.2x10(-1) when the SCC was used and 0.7x10(-1) when the Hale's scaled theory was used. The average values represent all the alcohols used at the same reduced temperatures. The average ratio was about the same throughout the temperature range, although J(exp)/J(the) calculated with the Hale's scaled theory increased slightly with increasing temperature. The saturation ratio dependency was predicted closest to experiment with the classical nucleation theory. The nucleation rates were compared to those found in the literature. The measurements were in reasonable agreement with each other. The molecular content of critical alcohol clusters was between 35 and 80 molecules. At a fixed reduced temperature, the number of molecules in a critical cluster decreased as a function of alcohol carbon chain length. The number of molecules in critical clusters was compared to those predicted by the Kelvin equation. The theory predicted the critical cluster sizes well.  相似文献   

4.
When the water-in-oil (w/o) microemulsion droplets including the Co(III)-pyridylazo complex as the photo-absorber were irradiated with a continuous-wave Ar(+) ion laser (514.5 nm), we have observed unexpected phenomenon that photo-absorbing microemulsion droplets in water repeated the expansion and the sudden contraction during the laser photophoretic migration. The period of the expansion-contraction cycle was inversely proportional to both the concentration of the complex and the irradiated laser power and was independent of the initial size of the droplet. The mechanism of the periodic motion of the droplet was investigated by local temperature measurement and Raman microscope spectroscopy. It was suggested that the first step was the phase separation of the bicontinuous microemulsion droplet into the normal w/o microemulsion outer phase and the aqueous inner phase in the droplet, which was caused by the laser-induced temperature gradient inside the droplet. Subsequently, an expansion of the inner aqueous phase was induced by the percolation of the external water by thermo-osmosis, which was caused by the laser-induced temperature gradient between the inside and the outside of the microemulsion liquid membrane of the droplet. When the liquid membrane became thinner to a critical thickness, the inner aqueous phase was released and the droplet shrank into the original size. The proposed mechanism can give an account of the unique cyclical motion.  相似文献   

5.
In this work, the modulation of the diffusion potential formed at the microfluidic aqueous-aqueous boundary by a pharmaceutical substance is presented. Co-flowing aqueous streams in a microchannel were used to form the stable boundary between the streams. Measurement of the open circuit potential between two silver/silver chloride electrodes enabled the diffusion potential at the boundary to be determined, which is concentration dependent. Experimental results for protonated propranolol as well as tetrapropylammonium are presented. This concept may be useful as a strategy for the detection of drug substances.  相似文献   

6.
7.
In order to evaluate the experimental data from laminar flow diffusion chamber (LFDC) experiments on homogeneous nucleation, an extensive postmeasurement computational analysis is required. The present work investigates the influence of the used computational methodology on the derived nucleation curves. To this end a reanalysis is made of previous LFDC experiments of 1-butanol nucleation in helium [D. Brus et al., J. Chem. Phys. 122, 214506 (2005)] using two different methods. The first method is based on single fluid heat and vapor transport in the carrier gas ignoring the aerosol processes, as commonly made in LFDC data evaluations. The second method is more comprehensive as is based on multidimensional computational fluid-particle dynamics. The calculations are made under the usual simplification of one-way coupling between fluid flow and particles, which is a valid approximation in most practical aerosols, while full aerosol dynamical effects are accommodated. Similar results were produced by the two methods. This finding corroborates the usual practice of omitting aerosol calculations in LFDC experimental data evaluation.  相似文献   

8.
9.
10.
Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons.  相似文献   

11.
Analysis of droplet contents is a key function involved in droplet-based microfluidic systems. Direct electrochemical detection of droplet contents suffers problems such as relatively poor repeatability, interference of capacitive current and relatively poor detectability. This paper presents a novel hybrid polydimethylsiloxane-glass chip for highly sensitive and reproducible amperometric detection of droplet contents. By wettability-patterning of the channel surface of the hybrid chip, water in oil droplets generated in the upstream part of the central channel can be switched to a two-phase vertical laminar flow (i.e., a continuous oil stream flowing atop a continuous aqueous stream) in the downstream part of the channel. The vertical laminar flow keeps the analyte in the underneath-flowing aqueous stream in direct contact with the sensing electrodes located on the bottom surface of the channel. Therefore, steady-state current signals with high sensitivity (1.2 A M−1 cm−2 for H2O2), low limit of detection (0.12 μM, S/N = 2), and good reproducibility (RSD 1.1% at 0.3 mM H2O2) were obtained. The methods for patterning of the inner channel surface are presented, and the behaviors of the microchip in flow profile switching and amperometric detection are discussed. The application of the developed microchip to enzyme kinetics study is also demonstrated.  相似文献   

12.
Chemical cytometry studies the molecular composition of individual cells by means of capillary electrophoresis or capillary chromatography. In one of its realizations an intact cell is injected inside the capillary, the plasma membrane is disrupted to release the cellular contents into the separation buffer, and, finally, the molecules of interest are separated and detected. The solubilization of the plasma membrane with a surfactant is a simple and efficient way of achieving cell lysis inside the capillary. To facilitate cell lysis by a surfactant the cell has to be contacted with the surfactant inside the capillary. We recently introduced a generic method for mixing solutions inside the capillary termed transverse diffusion of laminar flow profiles (TDLFP). In this work, we propose that TDLFP can facilitate efficient cell lysis inside the capillary. Conceptually, a short plug of the surfactant is injected by pressure prior to cell injection. The cell is then injected by pressure wizthin a plug of the physiological buffer. Due to the parabolic profiles of pressure-driven laminar flows the interface between the plug of the surfactant and that of the physiological buffer is predominantly longitudinal. Transverse diffusion mixes the surfactant with the physiological buffer, which leads to surfactant’s contact with the cell and subsequent cell lysis. Here, we demonstrate that the proposed concept is valid. TDLFP-facilitated cell lysis by a short plug of the surfactant allows us to exclude the surfactant from the run buffer, and, hence, facilitates modes of separation, which are incompatible with the surfactant’s presence in the run buffer. In addition to cell lysis, TDLFP will be used to mix the cellular components with labeling reactants, affinity probes, inhibitors, etc. We foresee that the generic nature and enabling capabilities of TDLFP will speed up the maturation of chemical cytometry into a practical bioanalytical tool.  相似文献   

13.
Isothermal homogeneous nucleation rates of 1-butanol were measured both in a thermal diffusion cloud chamber and in a laminar flow diffusion chamber built recently at the Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Prague, Czech Republic. The chosen system 1-butanol-helium can be studied reasonably well in both devices, in the overlapping range of temperatures. The results were compared with those found in the literature and those measured by Lihavainen in a laminar flow diffusion chamber of a similar design. The same isotherms measured with the thermal diffusion cloud chamber occur at highest saturation ratios of the three devices. Isotherms measured with the two laminar flow diffusion chambers are reasonably close together; the measurements by Lihavainen occur at lowest saturation ratios. The temperature dependences observed were similar in all three devices. The molecular content of critical clusters was calculated using the nucleation theorem and compared with the Kelvin equation. Both laminar flow diffusion chambers provided very similar sizes slightly above the Kelvin equation, whereas the thermal diffusion cloud chamber suggests critical cluster sizes significantly smaller. The results found elsewhere in the literature were in reasonable agreement with our results.  相似文献   

14.
In this Letter, we report on the motion of water droplets on surfaces decorated with molecular gradients comprising semifluorinated (SF) organosilanes. SF molecular gradients deposited on flat silica substrates facilitate faster motion of water droplets relative to the specimens covered with an analogous hydrocarbon gradient. Further increase in the drop speed is achieved by advancing it along porous substrates coated with the SF wettability gradients. The results of our experiments are in quantitative agreement with a simple scaling theory that describes the faster liquid motion in terms of reduced friction at the liquid/substrate interface.  相似文献   

15.
Most of the colloidal clusters have been produced from oil-in-water emulsions with identical microspheres dispersed in oil droplets. Here, we present new types of binary colloidal clusters from phase-inverted water-in-oil emulsions using various combinations of two different colloids with several size ratios: monodisperse silica or polystyrene microspheres for larger particles and silica or titania nanoparticles for smaller particles. Obviously, a better understanding of how finite groups of different colloids self-organize in a confined geometry may help us control the structure of matter at multiple length scales. In addition, since aqueous dispersions have much better phase stability, we could produce much more diverse colloidal materials from water-in-oil emulsions rather than from oil-in-water emulsions. Interestingly, the configurations of the large microspheres were not changed by the presence of the small particles. However, the arrangement of the smaller particles was strongly dependent on the nature of the interparticle interactions. The experimentally observed structural evolutions were consistent with the numerical simulations calculated using Surface Evolver. These clusters with nonisotropic structures can be used as building blocks for novel colloidal structures with unusual properties or by themselves as light scatterers, diffusers, and complex adaptive matter exhibiting emergent behavior.  相似文献   

16.
We have fabricated a range of silicon post surfaces where post width and spacing have been systematically varied. As one subset, we have generated surfaces where the post spacings in x and y assume different values. On these surfaces, the dynamic contact angles become anisotropic. A fluoropolymer monolayer is photochemically attached to the microstructured silicon, leading to the appearance of ultrahydrophobic properties. On one side, the advancing contact angles on these surfaces are not affected by variations in the geometric parameters. This furthers the conclusion that, during the advancing motion, a true contact angle of 180 degrees is reached. On the other side, the receding angles are strongly influenced by the post size and spacing. We quantitatively analyze this dependence and relate variations in the receding angle to the shape and movement of the three-phase contact line. It is suggested that during the receding motion the meniscus successively dewets from one post at a time, with a step function running along the contact line until it has receded from a row of posts over its entire length.  相似文献   

17.
A number of situations such as protein folding in confined spaces, lubrication in tight spaces, and chemical reactions in confined spaces require an understanding of water-mediated interactions. As an illustration of the profound effects of confinement on hydrophobic and ionic interactions, we investigate the solvation of methane and methane decorated with charges in spherically confined water droplets. Free energy profiles for a single methane molecule in droplets, ranging in diameter (D) from 1 to 4 nm, show that the droplet surfaces are strongly favorable as compared to the interior. From the temperature dependence of the free energy in D = 3 nm, we show that this effect is entropically driven. The potentials of mean force (PMFs) between two methane molecules show that the solvent separated minimum in the bulk is completely absent in confined water, independent of the droplet size since the solute particles are primarily associated with the droplet surface. The tendency of methanes with charges (M(q+) and M(q-) with q(+) = |q(-)| = 0.4e, where e is the electronic charge) to be pinned at the surface depends dramatically on the size of the water droplet. When D = 4 nm, the ions prefer the interior whereas for D < 4 nm the ions are localized at the surface, but with much less tendency than for methanes. Increasing the ion charge to e makes the surface strongly unfavorable. Reflecting the charge asymmetry of the water molecule, negative ions have a stronger preference for the surface compared to positive ions of the same charge magnitude. With increasing droplet size, the PMFs between M(q+) and M(q-) show decreasing influence of the boundary owing to the reduced tendency for surface solvation. We also show that as the solute charge density decreases the surface becomes less unfavorable. The implications of our results for the folding of proteins in confined spaces are outlined.  相似文献   

18.
Inclusion of a mixing chamber in a flow system is critically rev—iewed in-relation to sample dilution, improvement of mixing conditions and exploitation of exponential concentration lessening. Analytical perspectives related to the use of a mixing chamber such as time-based flow analysis, flow titrations, and analyte separation/concentration are also discussed along with the examination of several ordinary manifold components that might act as mixing chambers. The possibility of using the mixing chamber in order to accommodate or to carry out the multiple steps inherent to the specific analytical procedure or, in other words, to behave as a mini-laboratory, is also highlighted. This aspect is foreseen as a logical evolution of the lab-on-a-valve and the flow-batch concepts. The article is published in the original.  相似文献   

19.
There is growing evidence that a metastable phase of ice, cubic ice, plays an important role in the Earth's troposphere and stratosphere. Cubic ice may also be important in diverse fields such as cryobiology and planetary sciences. Using X-ray diffraction, we studied the formation of cubic ice in pure water droplets suspended in an oil matrix as a function of droplet size. The results show that droplets of volume median diameter 5.6 microm froze dominantly to cubic ice with stacking faults. These results support previous suggestions that cubic ice is the crystalline phase that nucleates when pure water droplets freeze homogeneously at approximately 235 K. It is also shown that as the size of the water droplets increased from 5.6 to 17.0 microm, the formation of the stable phase of ice, hexagonal ice, was favoured. This size dependence can be rationalised with heat transfer calculations. We also investigated the stability of cubic ice that forms in water droplets suspended in an oil matrix. We observe cubic ice up to 243 K, much higher in temperature than observed in many previous studies. This result adds to the existing literature that shows bulk ice I(c) can persist up to approximately 240 K. The transformation of cubic ice to hexagonal ice also showed a complex time and temperature dependence, proceeding rapidly at first and then slowing down and coming to a halt. These combined results help explain why cubic ice forms in some experiments described in the literature and not others.  相似文献   

20.
The coupling between structure and diffusion properties is essential for the functionality of heterogeneous biomaterials. Structural heterogeneity is defined and its implications for time-dependent diffusion are discussed in detail. The effect of structural heterogeneity in biomaterials on diffusion and the relevance of length scales are exemplified with regard to different biomaterials such as gels, emulsions, phase separated biopolymer mixtures and chocolate. Different diffusion measurement techniques for determination of diffusion properties at different length and time scales are presented. The interplay between local and global diffusion is discussed. New measurement techniques have emerged that enable simultaneous determination of both structure and local diffusion properties. Special emphasis is given to fluorescence recovery after photobleaching (FRAP). The possibilities of FRAP at a conceptual level is presented. The method of FRAP is briefly reviewed and its use in heterogeneous biomaterials, at barriers and during dynamic changes of the structure is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号