首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
针对氮化碳可见光利用率低和在光催化过程中光生电子与空穴易于复合的缺点,通过钴、碳共掺杂提升其光催化性能。以尿素为前驱体,维生素B12(VB12)为钴源和碳源,将二者的混合物进行一步煅烧,制备钴、碳共掺杂氮化碳(CNCoC)。结果表明,钴、碳共掺杂对氮化碳的微观形貌、骨架结构和官能团都没有造成明显影响;但是增大了产物的比表面积,调节了产物的能带结构,增加了其对可见光的吸收。更重要的是,相比于单一元素碳的掺杂,钴、碳共掺杂具有协同作用,能够更有效地提升光生电子和空穴的分离和传递效率。因此,加入6 mg VB12制备的CNCoC-6的可见光光催化分解水产氢速率达到了56.1 μmol·h-1,是纯氮化碳(CN)的3.05倍;而碳掺杂氮化碳(CNC-6)的产氢速率仅为CN的2.55倍。  相似文献   

2.
林珍珍  林励华  王心晨 《催化学报》2015,(12):2089-2094
石墨相氮化碳是一种聚合物半导体材料(带隙宽度约为2.7 eV),具有独特的和可调控的光学和电子性质,能够作为半导体光催化剂用于驱动一系列光催化反应,在能源和环境领域具有潜在应用前景.利用简单的热聚合法,在空气或氮气中高温焙烧(500?700 oC)富氮前驱体可以合成氮化碳聚合物.通常,这些富氮前驱物含有三嗪单元(如三聚氰胺和三聚硫氰酸原料)或在热聚合过程中会生成三嗪单元(如氰胺和二聚氰胺原料).由于热聚合反应过程受到反应动力学限制,氮化碳半导体材料的聚合度和结晶度不高,且比表面积较小,使其在光催化反应过程中存在传质作用差、激子结合能高和光生载流子复合严重等问题,不利于光催化反应进行.本课题组发展了氮化碳光催化剂的合成新方法(高温氮化),该方法抑制了热聚合过程中三嗪中间体的快速分解,促进了氮化碳的聚合.我们将所制备的催化剂用于光催化分解水产氢反应,发现高温氮热反应制备的氮化碳样品(CNC)的催化性能显著优于传统氮化碳.傅立叶红外光谱(FT-IR)、X射线光电子能谱(XPS)和13C固体核磁共振谱(13C NMR)的表征结果表明, CNC光催化剂具有与传统氮化碳类似的化学结构和组成(七嗪基本结构单元).然而,对于高温氮化热聚合方法制备得到的七嗪基氮化碳聚合物光催化性能增强的原因并不清楚.基于此,本文采用X射线粉末衍射(XRD)、场发射透射电镜(FE-TEM)、原子力显微镜(AFM)和比表面积(BET)测试等手段研究了不同制备方法得到的氮化碳基光催化剂在可见光光催化分解水产氢反应中催化性能差异的原因. XRD结果表明, CNC系列样品的XRD谱与体相氮化碳相似,具有石墨相氮化碳特征的层间堆积(002)衍射峰和面内重复单元(100)衍射峰.与传统石墨相氮化碳相比, CNC在27o附近的衍射峰发生明显偏移.其(002)晶面衍射峰从27.5o增大到27.8o,使(002)晶面间距从0.325 nm减小到0.322 nm.进一步观察发现, CNC系列样品与体相氮化碳相比,其衍射峰出现明显窄化,且衍射强度增加,表明由高温氮化热聚合法制得的产物具有更好的结晶度.通常,半导体晶体结构缺陷会阻碍光生载流子的快速迁移和分离,提高氮化碳聚合物的结晶度可有效改善其光催化氧化还原反应. TEM结果表明,传统石墨相氮化碳是由大块的(厚重的)片层堆积形成,而高温氮化合成的CNC-3则是由纳米薄片组成,这种形貌差异可能是因为活性前驱体(氨气和三聚氰氯)的使用改善了反应动力学过程.另外, CNC-3纳米片上有一些地方发生卷曲,这种卷曲能够有效减小纳米片表面张力,降低其表面能,使纳米片结构稳定存在,类似于石墨烯中的碳卷曲行为. CNC-3的AFM结果进一步证实形成了纳米片结构,其厚度均匀,约为3–6 nm.我们构筑的这种纳米薄片结构具有高度敞开的平面结构,有利于光生电子-空穴从体相迁移到表面,可有效提高半导体的光催化性能. BET结果表明, CNC系列样品的比表面积均比传统g-C3N4的比表面积大,且随焙烧温度升高而增大. CNC光催化剂增大的比表面积改善了多相光催化反应的传质扩散过程,增加了表面反应活性位,有利于提高氮化碳聚合物的光催化活性.  相似文献   

3.
以三聚氰胺为前驱体,价格低廉、来源广泛的海泡石作为硬模板,制备出具有特殊空腔结构的泡沫状氮化碳。 通过透射电子显微镜、X射线粉末衍射、傅里叶变换红外光谱、N2吸附-脱附、紫外可见漫反射光谱及荧光光谱等手段对样品的表面形貌和结构等物理性质进行表征,以光解水产氢性能考察其光催化活性,并通过电化学测试手段考察其光生电荷传输和分离情况。 结果表明,聚多巴胺能起到粘接剂作用,改善了前驱体与模板的结合,制备出的泡沫状氮化碳具有更大的比表面积;随模板用量增加,氮化碳的比表面积增大,当聚多巴胺改性海泡石与三聚氰胺质量比为2:1时,泡沬状氮化碳比表面积可达389.2 m2/g,其可见光产氢速率约为1061.87 μmol/(g·h),较体相氮化碳和未经多巴胺改性海泡石制备的氮化碳分别提高了7和2.6倍。 这表明大比表面积的泡沫状氮化碳为光催化反应提供了更多的活性位点,改善了多相光催化反应的传质扩散过程,提高了光生电子-空穴的分离效率,其特殊的空腔结构能有效地提高光的利用率,从而提高其光催化活性。  相似文献   

4.
石墨相氮化碳(g-C3N4)由于具有对可见光吸收范围较窄和光生载流子分离效率低等缺陷,其光解水产氢活性较差.我们采用简单的一步热共聚法,以尿素和2,4,6-三氨基嘧啶(TAPD)混合物为前驱物,制备碳自掺杂纳米片(CNNS-x,xmg代表掺入TAPD的质量).X射线衍射(XRD)、元素分析(EA)和X射线光电子能谱(X...  相似文献   

5.
作为一种非金属半导体光催化剂,石墨相氮化碳(g-C3N4)已广泛应用于水中有机污染物去除、劈裂水产氢、二氧化碳还原制碳氢化合物燃料以及选择性氧化有机合成等许多光催化领域.然而,聚集态层状结构和粉末物理状态严重限制了g-C3N4在非均相光催化反应中的实际应用.一方面,g-C3N4的聚集态层状结构限制了光生载流子的表面迁移并增加了光催化反应的传质阻力.另一方面,由于附加的固-液分离步骤,粉体g-C3N4不便于实际应用.因此,为解决g-C3N4的上述缺点,一些研究已经进行并集中于g-C3N4的形貌控制合成及负载.构建多孔微观结构是合成具有优异光催化活性g-C3N4的有效途径之一.本文研究表明,盐酸或乙二醇预处理的三聚氰胺均可用作制备多孔g-C3N4的前驱体.有趣的是,由于在多孔g-C3N4制备体系中不同制孔单元的共存,与通过盐酸或乙二醇单独预处理的三聚氰胺制备的多孔g-C3N4相比,通过二者共同预处理的三聚氰胺制备的多孔g-C3N4具有更丰富的多孔微观结构.与制备负载型二氧化钛不同,由于在制备g-C3N4过程中缺少溶胶-凝胶步骤,因此负载型g-C3N4较难制备.而且,对于氟-锡氧化物(FTO)基底负载的g-C3N4,在实际应用中存在一些不足.首先,FTO基底的片状物理结构不利于反应底物的扩散.其次,FTO基底的吸光效应会导致光能损失,因此g-C3N4只能在FTO基底的单面负载.最后,在g-C3N4和FTO基底之间无化学作用,因此在光催化反应过程中不可避免造成g-C3N4的损失.因此,以盐酸/乙二醇共同预处理的三聚氰胺作原料,氢氟酸/3-氨基丙基三甲氧基硅烷共同预处理的石英棒作基底,首次制备了多孔g-C3N4和负载型多孔g-C3N4.丰富的多孔微观结构使得所制多孔g-C3N4具有优异的光催化活性;且由于多孔g-C3N4与石英棒基底间存在化学作用,因而具有相当高的稳定性.另外,由于在构建石英棒反应器之后不影响光生载流子的表面迁移和目标有机污染物的扩散,因此负载型多孔g-C3N4的光催化活性与粉体多孔g-C3N4相似.所制备多孔g-C3N4和负载型多孔g-C3N4的光催化活性通过在可见光条件下单组份有机废水的处理进行初步评价.在有机污染物降解同时产氢系统中,由于水和有机污染物之间的氧化还原反应难于进行,因此与传统的光催化降解和产氢系统相比,所制多孔g-C3N4的氢气产率和降解效率均显著降低;然而,在有机污染物降解同时产氢系统中,随着该材料光催化活性的提高,氢气产率和降解效率同时提高.这是因为光催化剂电子传递能力的提高促进了有机污染物和水之间的氧化还原反应.  相似文献   

6.
徐浩添  肖蓉  黄靖然  姜燕  赵呈孝  杨小飞 《催化学报》2021,42(1):107-114,后插8-后插9
氢气因其具有高燃烧热、可再生性以及燃烧产物无污染等优势被认为是一种绿色可再生能源,是取代化石燃料的候选能源之一.然而,如何利用自然界中丰富的太阳能和水资源实现光分解水制氢的关键在于开发高效的光催化剂.在尺寸明确、能级带隙匹配的纳米材料间进行完美的界面复合(异质结构筑)是实现高效太阳能-氢能转换的最佳途径.石墨相氮化碳(CN)材料因其电子结构可调和化学性能稳定等特性被光催化界所关注.然而,氮化碳材料较弱的电学性能如电荷传输能力差及电子-空穴对复合率高导致其表现出较低的光催化制氢效率.基于此,我们用盐酸对氮化碳进行质子化处理,使材料表面电荷发生改变,从而实现氮化碳的电子带隙调节和电导率提升.在此基础上,将二维碳化钛原位负载于质子化的氮化碳(PCN)纳米片表面构筑肖特基结.PCN纳米片与碳化钛纳米片间的良好界面接触促进了电荷在材料界面上传输,进而加速了氮化碳材料的电荷分离,实现了氮化碳光催化剂活性的提升.Zeta电位测试结果显示,CN和PCN的表面电位分别为?9.5和27.3 mV,表明质子化处理可以有效改变材料表面电荷,并促其与碳化钛纳米片进行静电组装.该结果进一步得到了扫描电子显微镜(SEM)和原子力显微镜(AFM)的证实.改变表面电荷使氮化碳材料的能带宽度由2.53 eV(CN)减小到2.41 eV(PCN),增强了可见光区吸收.同时,PCN的光电流密度提升了约4倍,电子阻抗和激发态电子的辐射复合都显著降低.将PCN与碳化钛复合制得复合材料(PCN-x,x=10,20,40),实验结果表明5 g的PDN最佳负载碳化钛的量为20 mg(PCN-20).在标准太阳模拟器的可见光区(>420 nm),复合材料PCN-20的光催化水分解产氢量可达2181μmol·g-1,是CN催化剂的约5.5倍,PCN的2.7倍,并且经过5次产氢循环后PCN-20仍具有稳定的氢气释放速率.以上结果表明,氮化碳材料可以通过质子化处理以及与适量的碳化钛复合实现光催化产氢性能的提升,其中碳化钛在体系中起助催化剂的作用.该研究结果可为其他半导体光催化剂的性能优化以及非贵金属助催化剂的研究提供新思路.  相似文献   

7.
氮化碳聚合物(PCN)是一种有潜力的聚合物型半导体光催化剂,具有原料廉价、物理化学稳定性好以及合适的带边等优点,使其在光催化分解水产氢产氧、降解染料以及抑菌等方面具有很大的潜力.但是由于高电负性的N原子被低电负性的C原子均匀地取代,增加了PCN内部电子传输的难度,使得光生电子–空穴对的复合度增加,进而光催化活性降低.由于PCN的分子结构可调控,所以可以通过分子掺杂来改变氮化碳分子结构,提高光催化活性.常用的分子有机分子,比如吡啶类化合物、嘧啶类化合物以及噻吩类化合物.研究发现,强电负性元素的引入可以改变氮化碳的电子分布,所以含有两个N原子的咪唑类化合物理论上对氮化碳的光催化活性提升帮助更大.由于此类化合物还未见有报道.因此,本文将同时含有咪唑环和嘧啶环的可可碱与尿素反应,生成了咪唑环与嘧啶环共掺杂的氮化碳聚合物,并通过一系列的表征方法验证了咪唑环与嘧啶环成功引入到氮化碳聚合物结构中;然后利用紫外可见光谱(UV-vis),荧光发射光谱(PL),电子顺磁共振(EPR)等实验与DFT理论计算共同验证了咪唑环与嘧啶环共掺杂的氮化碳光学性能;最后通过光催化分解水产氧和降解罗丹明B(RhB)来评价改性后氮化碳的活性.UV-vis测试结果表明,改性后的PCN不仅本征吸收发生红移,而且在波长450到550 nm之间有一个明显的吸收峰,这是由于引入咪唑环和嘧啶环后本征n→π~*电子跃迁所致.并且改性后的PCN的禁带宽度相比于未改性有所降低,说明其可利用的可见光范围增加.PL和EPR结果表明,改性后的PCN不仅光生载流子的复合得到了极大地抑制,而且能够产生更多的孤对电子.通过XPS价带谱,莫特–肖特基曲线以及DFT理论计算推断出改性前后PCN的带边位置,发现改性后PCN的价带位置更正,说明其产生的空穴氧化能力更强.光催化分解水产氧和降解RhB发现,最优改性样品CN40的产氧和降解RhB活性分别是未改性氮化碳的4.43倍和5.1倍.这说明通过咪唑环和嘧啶环共掺杂改性后的氮化碳的光催化活性确实得到了大幅度提升.最后通过添加各种牺牲剂和ESR/DMPO表明·O_2~-和空穴是降解RhB的主要因素.综上所述,通过咪唑环和嘧啶环共掺杂改性氮化碳聚合物,不仅提高了其光吸收能力,抑制了光生载流子的复合,产生更多的孤对电子,而且使得价带位置正移,提高了价带空穴的氧化能力,光催化活性显著提高.  相似文献   

8.
石墨相氮化碳是类石墨层状聚合物材料,因其特殊的能带和电子结构,近年来成为功能材料研究领域的热点.液相合成法具有温和多变的特性,是石墨相氮化碳合成的重要途径.本文作者就现阶段液相介质合成氮化碳的主要方法进行了介绍,主要包括液相电沉积、脉冲激光烧蚀、溶剂热合成法等.介绍了不同液相介质和合成参数对制备氮化碳材料晶型、形貌等的影响.同时就溶剂热合成氮化碳在光催化领域的研究进展进行了总结.在未来的研究中,液相合成法将极大的丰富氮化碳材料结构优化的途径,有助于推动多功能聚合物材料的深入研究.  相似文献   

9.
芳香电子供体-受体折叠体是由一定长度的柔性连接分子、含π电子供体(D)或称为富π电子的1,5-二烷基萘酚(Dan)等和含π电子受体(A)或称为缺π电子的1,4,5,8-萘四甲酸二酰亚胺(Ndi)等基团构成,通过分子内或分子间D-A交替堆叠而形成的折叠体。芳香电子供体-受体折叠体的形成涉及二级结构(构象)的分子自组装。自愈合功能的发现是芳香电子供体-受体折叠体研究的新亮点。本文综述各种芳香电子供体-受体折叠体的链结构、分子内或分子间D-A协同相互作用、折叠体结构和形成机理、以及镊子型折叠体的自愈合功能。  相似文献   

10.
光催化解离H2O合成H2是绿色可再生的太阳能光子能量转换策略之一.目前,增强光催化材料对太阳能光子的捕获并将之有效利用仍然是一个具有挑战性的课题.光催化解离H2O反应包括三个过程:太阳能光子能量促使光生电子在半导体材料带隙中的跃迁;光生电子定向传输;光生电子与吸附在半导体材料表面的H2O分子发生反应.第一过程需要强的太阳光子捕获能力以产生足够的光生载流子;第二、三过程在动力学上反映了光生载流子在各个竞争过程中能否有效利用的问题,如光生电子迁移与H2O作用的速度很慢(~μs),而电子与空穴的复合速度快(~ps).目前研究者很难协调半导体材料的电学和光学特性以满足光生载流子在热力学和动力学两方面的要求.g-C3N4是由C、N原子通过sp2杂化组成的二维π共轭体系.当g-C3N4结构偏离二维平面时,共轭体系的π电子由凹面迁移到凸面,促使凹、凸面形成表观电势差,有利于电子的定向传输.本文通过卷曲sp2杂化离域均三嗪体系偏离二维平面,得到空心凹面g-C3N4结构,便捷地优化了半导体的电子结构.将CuInS2嵌入生长于空心g-C3N4的凹面,所构成的半导体光催化材料CuInS2@C3N4展现了增强的光捕获能力,以及电子定向传输转移能力.结合XPS、光电流测试、电化学阻抗谱、稳态及瞬态荧光等表征手段揭示空心g-C3N4凹、凸面表观电势差驱动光生电子以S-型光催化作用机制从CuInS2的Cu 2p向g-C3N4的N 1s的路径转移.因而,所构建的CuInS2@C3N4在可见光激发下产氢效率提高到373μmol·h^?1·g^?1,其产氢效率分别是二维平面g-C3N4负载1 wt%Pt和3 wt%Pd效率的1.57倍和1.35倍,表明空心g-C3N4凹、凸面电势差可以显著地促进光生电子分离和利用率,从而提高光催化解离水制氢效率.本文可增强g-C3N4的可持续太阳能转换性能,也适用于其他半导体材料以替代贵金属光催化体系,降低光催化产氢技术成本,促进光催化技术的应用.  相似文献   

11.
The fast separation rate of photogenerated carriers and the high utilization of sunlight are still a major challenge that restricts the practical application of carbon nitride (g-C3N4) materials in the field of photocatalytic hydrogen (H2) evolution. Here, ultrathin oxygen (O) engineered g-C3N4 (named UOCN) was successfully obtained by a facial gaseous template sacrificial agent-induced bottom-up strategy. The synergy of O doping and exfoliating bulk into an ultrathin structure is reported to simultaneously achieve high-efficiency separation of photogenerated carriers, enhance the utilization of sunlight, and improve the reduction ability of electrons to promote photocatalytic H2 evolution of UOCN. As a proof of concept, UOCN affords enhanced photocatalytic H2 evolution (93.78 μmol h?1) under visible light illumination, which was significantly better than that of bulk carbon nitride (named CN) with the value of 9.23 μmol h?1. Furthermore, the H2 evolution rate of UOCN at a longer wavelength (λ = 450 nm) was up to 3.92 μmol h?1 due to its extended light absorption range. This work presents a practicable strategy of coupling O dopants with ultrathin structures about g-C3N4 to achieve efficient photocatalytic H2 evolution. This integrated engineering strategy can develop a unique example for the rational design of innovative photocatalysts for energy innovation.  相似文献   

12.
通过化学浴和连续离子层沉积法构筑了BiVO4/CdS和CdS/BiVO4两种S型异质结薄膜光电极. 利用扫描电子显微镜(SEM)、 X射线衍射(XRD)、 紫外-可见吸收光谱(UV-Vis)以及电化学阻抗谱(EIS)对其形貌、 结构和光电性能进行了表征, 测试了两种薄膜电极的光催化和光电催化产氢性能. 结果表明, CdS和BiVO4之间形成S型异质结, BiVO4/CdS表现出最佳的光催化产氢性能, 而CdS/BiVO4表现出最佳的光电催化产氢性能. 借助表面光电压技术探究了两种薄膜电极中S型异质结内建电场的形成过程和载流子传输的机制.  相似文献   

13.
《中国化学快报》2020,31(6):1603-1607
An ambient pressure-induced calcination process was proposed to prepare g-C_3 N_4 with different structures.The porcelain boat with designed porosity is used to control the ambient pressure to change the diffusion behavior of the reaction molecules,thereby controlling the layer structure and rich pyridinic N content of g-C_3 N_4,thus renders superior lithium storage performance.  相似文献   

14.
As an emerging 2D conjugated material,graphitic carbon nitride(CN) has attracted great research attention as important catalytic medium for transforming solar energy.Nanostructure modulation of CN is an effective way to improve catalytic activities and has been extensively investigated,but remains challenging due to complex processes,time consuming or low yield.Here,taking advantage of recent discovered good solvents for CN,a nanoprecipitation approach using poor solvents is proposed for preparation of CN nanoparticles(CN NPs).With simple processes of CN dissolution and precipitation,we can quickly synthesize CN NPs(^40 nm) with a yield of up to 50%,the highest one to the best of our knowledge.As an example of potential applications,the as-prepared CN NPs were applied to photocatalytic degradation of dyes with an evident boosted performance up to 2.5 times.This work would open a new way for batch preparation of nanostructured CN and pave its large-scale industrial applications.  相似文献   

15.
苯酚是一种重要的化工原料,目前苯酚的工业生产路线普遍存在工艺流程复杂、苯酚收率低和环境污染严重等问题.为实现苯酚的绿色生产,苯直接氧化制苯酚的合成路线受到各国研究者的广泛关注.在苯直接羟基化反应常用的 N2O, O2和 H2O2三类氧化剂中, N2O由于来源有限,其工业应用受到极大限制;而 O2不易活化,且反应过程中常需还原剂存在,苯酚收率低;相比之下, H2O2作为氧化剂,其唯一副产物是 H2O,而且反应条件温和,因而以 H2O2为氧化剂的苯羟基化反应是最具工业应用前景的苯酚合成路线.然而,由于苯分子中的 C?H键非常稳定,活化能较高,同时产物苯酚的反应活性要高于反应物苯,因此,为实现苯的高效转化,积极探索研究高活性和稳定性的催化剂变得尤为重要.在我们之前的研究中发现,包含大π体系的氧化石墨烯载体有利于具有同样π共轭体系的反应物苯的吸附,进而促进苯的转化,提高反应活性.而石墨相氮化碳(g-C3N4)具有与氧化石墨烯类似的π共轭体系,且表面具有大量的活性位点和缺陷位,对苯环类物质具有较好的活化作用,这使其可能成为更优异的载体材料.基于此,以 g-C3N4为载体,采用浸渍法制备了一系列不同钒含量的催化剂xV/g-C3N4,并通过 XRD, FT-IR, TEM, TG等表征技术对催化剂进行了系统研究,以期揭示催化剂结构与反应活性之间的构效关系. XRD的表征结果表明,xV/g-C3N4仍具有载体 g-C3N4的层状堆积结构,且该结构不受钒负载量变化的影响.同时, xV/g-C3N4中钒物种的分散度较高,未发生团聚晶化.更直观地,通过 TEM观察发现,xV/g-C3N4中的钒物种均匀分散. FT-IR的表征结果说明钒物种与 g-C3N4之间存在较强的相互作用.此外,通过 TG表征发现, g-C3N4高温稳定性较好,即使焙烧温度高达550°C,其结构仍不受影响.综上所述,在xV/g-C3N4催化剂中,载体 g-C3N4的结构非常稳定,经负载钒物种以及焙烧处理后仍能保持不变;而钒物种与 g-C3N4之间存在较强的相互作用,且均匀分散,使催化剂具有较高的稳定性和较好的催化性能.在以 H2O2为氧化剂,80 wt%醋酸溶液为溶剂的苯直接氧化制苯酚反应中,xV/g-C3N4催化剂显示了良好的催化活性,其中反应活性最高的是8V/g-C3N4催化剂,在最佳反应条件下,苯酚的收率和选择性分别达到24.4%和99.2%.同时,通过计算 TOF值发现,8V/g-C3N4的 TOF值高达13.1 h-1,远高于文献中报道的以 C3N4为载体的催化剂的 TOF值(0.52–0.59 h-1),这表明xV/g-C3N4催化剂具有优异的催化活性.此外,以8V/g-C3N4为代表又进一步考察了催化剂的稳定性,在回收重复实验中催化剂的活性保持稳定.  相似文献   

16.
《中国化学快报》2021,32(9):2782-2786
To achieve an efficient photocatalytic for clean energy production and environmental remediation, the highly active Fe-doped and terephthalaldehyde-modified carbon nitride (Fe-CN/NTE) isotypic heterojunction photocatalyst is constructed via a simple annealing method for degradation of organic pollutants with simultaneous resource recovery. The Fe-CN/NTE catalyst exhibits a 93% removal rate of p-nitrophenol (4-NP) and a 1.72 mmol/g H2 evolution rate in 2 h simultaneously under visible light irradiation, which are higher than those of pristine CN, Fe-CN, and NTE, respectively. Photoelectrochemical tests show that the excellent photocatalytic performance of Fe-CN/NTE comes from the improved migration, transportation, and separation of photoinduced charge carriers and expanded light-harvesting range. Moreover, hydroxyl radical (OH), electron (e), and hole (h+) are the main active species and the rational mechanism of 4-NP photodegradation was proposed based on scavenger measurements and liquid chromatography-mass spectrometry (LC–MS), respectively. Isotypic heterojunction Fe-CN/NTE photocatalyst possesses excellent stability in the H2 evolution and 4-NP degradation during five-run cycle tests, posing as a promising candidate in practical works for organic pollution and energy challenges.  相似文献   

17.
The enhanced photocatalytic activity of phosphate/potassium co-functionalized carbon nitride can be attributed to the promoted reactants activation capacity, the decreased of carriers recombination, and the construction of electronic channels between CN layers.  相似文献   

18.
半导体光催化是一种利用半导体将太阳能转换为高能化学能的绿色技术,在可再生清洁能源生产和污染物修复领域有着巨大的应用前景.石墨相氮化碳(g-C3N4)作为一种环境友好的非金属半导体,因其制备工艺简单、来源丰富、热稳定性和化学稳定性好、可见光吸收范围及特殊的电子性能而受到广泛关注.但一般常用氮源前驱体如二氰二胺、三聚氰胺等...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号