共查询到20条相似文献,搜索用时 15 毫秒
1.
近年来我国淀粉产业迅速发展,给相关企业带来了巨大经济效益的同时,由于其情况复杂,致使相关企业无法正确掌控淀粉价格的走势,也造成了大量的经济损失.因此,寻找一种科学的、高效的淀粉价格预测方法已成为当务之急.将遗传算法(GA)与回归型支持向量机(SVR)相融合,建立了GA-SVR淀粉价格预测模型.对2003-2011年淀粉价格进行仿真预测,结果表明,模型的决定系数和均方误差均优于其它方法,验证了模型的有效性与优势. 相似文献
2.
碳市场价格呈现非线性、非平稳的复杂特性,准确预测具有较大的挑战。基于“分而治之”的思想,提出了一种基于局部回归的多尺度碳市场价格预测模型。提出的模型利用集成经验模态分解(EEMD)对碳市场价格时间序列进行分解。启发于EEMD局部特征分解的特点,对分解后的分量采用局部回归方法进行预测,然后将分量预测结果进行集成。采用的局部回归方法包括局部线性回归(LLP)、局部多项式回归、局部岭回归、局部主成分回归、局部偏最小二乘回归和局部套索回归。实验结果表明基于局部回归的多尺度预测模型具有优异的预测性能。在提出的模型中,EEMD-LLP结构简单且性能更为突出,进一步对EEMD-LLP参数的适应性进行探讨。与新近提出模型的对比结果表明了EEMD-LLP在碳市场价格预测中的有效性。 相似文献
3.
汇率波动率是刻画外汇金融资产收益变化程度的指标,也是度量外汇风险的方法之一,汇率波动对经济与金融系统都有重要的影响。由于非平稳和非线性的特征,准确预测汇率波动率一直是金融研究的重点和难点。为了提高预测汇率波动率的准确性,本文采用基于人民币汇率高频数据计算的已实现波动率和机器学习方法,对数据进行分解集成和建模,提出了一种有效的多尺度EEMD-PSR-SVR-ARIMA预测模型。具体过程如下:首先,采用集合经验模态分解(EEMD)的方法将复杂的时间序列分解成不同尺度的本征模态函数和趋势项;然后采用支持向量回归(SVR)的方法对本征模态函数进行预测,并利用相空间重构和粒子群优化的方法来确定SVR模型的输入维数与参数。同时,使用差分自回归移动平均模型(ARIMA)预测趋势项;最后集成得到模型预测的结果。实证结果表明EEMD-PSR-SVR-ARIMA模型可以有效地提高汇率波动率预测的精度。 相似文献
4.
海洋表面温度(SST)具有非线性、非平稳等特征,给处理和预测带来了很大的困难.将集合经验模态分解(EEMD)、改进的集合经验模态分解(CEEMD)与支持向量机(SVM)方法相结合,实现了对东北太平洋月平均海温距平序列(SSTA)的预测:首先应用EEMD或CEEMD方法将SST数据分解为多个本征模态函数(IMFs),然后应用SVM算法对各IMFs进行拟合、预测,最后对各IMFs预测结果叠加重构得到预测结果.EEMD-SVM和CEEMD-SVM数值模拟结果显示,预测最大误差小于0.25℃,并且CEEMD-SVM预测效果更好,为SST实际预测提供了参考. 相似文献
5.
针对小宗农产品价格序列波动特征中呈现出的非平稳、非线性等问题,提出了一种基于“分解与集成”的WOA-VMD-LSTM组合预测模型。首先利用样本熵作为鲸鱼优化算法(WOA)的适应度函数,对变分模态分解方法(VMD)的两个自由参数进行全局寻优;再使用优化后的变分模态分解方法对价格序列进行分解;最后将得到的多模态分量及残差作为输入特征集成到长短期记忆网络(LSTM)中,构建组合模型。将该方法应用于马铃薯、莲藕、白萝卜、大白菜、西兰花、卷心菜的日均价格数据进行预测,实验结果表明,WOA-VMD-LSTM组合模型的均方根误差分别为0.292,0.381,0.129,0.125,0.782和0.142,且与EMD-LSTM组合模型以及ARIMA模型进行对比,WOA-VMD-LSTM组合模型在多种农产品价格的预测上具有更明显的优势。本研究提出的组合预测模型有助于相关产业对市场进行合理配置。 相似文献
6.
由于碳交易市场价格的波动性大及相互影响关系的复杂性,本文试图构建碳价格长期和短期的最优预测模型。考虑到碳交易价格波动的趋势性和周期性特点,基于经验模态分解算法(EMD)、遗传算法(GA)—神经网络(BP)模型、粒子群算法(PSO)—最小二乘支持向量机(LSSVM)模型及由它们构建的组合预测模型,对中国碳市场交易价格进行短期预测和长期预测。实证分析中将影响碳交易价格的不同宏观经济因素和碳价格时间序列因素做为输入变量,分别代入组合模型进行预测。研究结果表明,在短期预测中,EMD-GA-BP模型预测效果优于GA-BP模型和PSO-LSSVM模型;而在长期预测中,组合模型EMD-PSO-LSSVM模型预测效果优于只考虑碳价格波动趋势性或周期性预测效果。 相似文献
7.
《数学的实践与认识》2017,(24)
海洋表面温度(SST)具有非平稳、非线性的特征,对处理和预测造成了很大困难.将互补集合经验模态分解(CEEMD)和BP神经网络相结合,对东北太平洋和赤道中、东太平洋这两区域的月平均海洋表面温度距平序列(SSTA)进行模拟预测研究:首先应用CEEMD方法将SSTA分解为不同尺度的一系列本征模函数(IMFs);再运用BP神经网络对各IMFs进行分析预测;最后将各IMFs预测结果进行重构得到最终SSTA的预测值.数值实验的结果表明,应用CEEMD和BP神经网络对东北太平洋和赤道中、东太平洋的SST预测是有效的. 相似文献
8.
铁路货运量受到多种因素影响,准确的预测可以为铁路行业未来规划的编制提供重要的参考依据,也可以使铁路部门制定符合当前货运市场的运输政策。货运量数据具有非线性、不平稳的特点,利用传统的单一预测模型进行预测,很难描述整体特征,预测精度有待提高。本文基于分解—集成的原则,利用变分模态分解算法将货运量分解为高频和低频模态,针对各模态特点,分别建立预测模型,将得到的预测结果加总起来作为最终货运量的预测值。实证表明,分解—集成预测方法与传统的单一预测模型相比,提高了预测的准确率,可以很好地应用在铁路货运量需求预测的研究中。 相似文献
9.
针对猪肉价格上下波动呈非线性关系和影响因素复杂等难以预测的问题,提出了基于PCA-GM-BP神经网络预测模型对猪肉价格进行有效预测.以2010年1月-2018年12月的月度价格数据作为样本,共计108组数据,利用PCA对影响猪肉价格变化的12种因素进行降维处理,选用对猪肉价格的主要累积贡献率超过96%的5个主成分,构建... 相似文献
10.
EMD-SVM在南京市月平均气温预测中的应用 总被引:1,自引:0,他引:1
南京市月平均气温具有非平稳性、噪声大、序列宽频等特征.为了提高温预测精度,本文提出一种经验模态分解(EMD)和支持向量机(SVM)回归相组合的预测模型(EMD-SVM).首先应用EMD分解算法把南京市月平均气温分解成不同尺度的基本模态分量(IMF),再运用支持向量机回归模型对每个IMF预测,最后将预测结果重构得到南京市月平均气温预测值.结果表明:EMD-SVM模型预测与单一支持向量机回归模型预测相比,平均预测精度提高0.59度,是一种有效的预测气温的模型. 相似文献
11.
为了捕捉农产品市场期货价格波动的复杂特征,进一步提高其预测精度,基于分解集成的思想,构建包含变分模态分解(VMD)和极限学习机(ELM)的分解集成预测模型。首先,利用VMD分解的自适应性和非递归性,选择VMD将复杂时间序列分解成多个模态分量(IMF)。其次,针对VMD分解关键参数模态数K的选取难题,提出基于最小模糊熵准则寻找最优K值的方法,有效避免模态混淆和端点效应问题,从而提升VMD的分解能力。最后,利用ELM强大的学习能力和泛化能力,对VMD分解得到的不同尺度子序列进行预测,集成得到最终预测结果。以CBOT交易所稻谷、小麦、豆粕期货价格作为研究对象,实证结果表明,该分解集成预测模型在预测精度和方向性指标上,显著优于单预测模型和其它分解集成预测模型,为农产品期货价格预测提供了一种新途径。 相似文献
12.
基于支持向量机的飞行事故率预测模型 总被引:1,自引:0,他引:1
飞行事故率是表征飞行安全水平的重要指标,其预测是典型的小样本问题.针对目前飞行事故率预测中存在的预测精度不高的问题,提出了一种基于回归支持向量机的飞行事故率预测建模方法.最后结合实际算例,采用SVR进行了飞行事故率预测建模并把预测结果与灰色预测和灰色马尔柯夫链预测进行了对比.仿真结果表明SVR具有很高的建模精度和泛化能力,从而验证了采用SVR进行航空飞行事故率预测的合理性和先进性. 相似文献
13.
基于AGA-SVM的非线性组合预测模型 总被引:3,自引:0,他引:3
陈涛 《数学的实践与认识》2010,40(4)
为提高预测精度,提出基于AGA-SVM的非线性组合预测模型.以组合预测模型的误差平方和最小为优化准则,用加速遗传算法对支持向量机参数进行优化选择,并利用支持向量机对单一模型的预测结果进行组合预测.算例结果表明,AGASVM综合利用了各单个预测模型的重要预测信息,其预测误差远远小于各单个模型的预测误差,其预测精度更高,模型的实用性更强. 相似文献
14.
《数学的实践与认识》2013,(19)
由于区域经济系统中许多经济变量呈现出强非线性与大波动性的特征,使得传统的时间序列线性建模和预测技术难以适应区域经济预测的要求.为此,提出基于支持向量机改进的残差自回归区域经济预测模型.首先采用时间序列分析中的残差自回归模型对时间序列趋势进行线性拟合,然后对残差自回归模型估计后的残差序列采用支持向量回归方法再次提取其非线性特征,从而提高区域经济时间序列模型的预测精度.最后以广东省GDP的预测实例说明模型的有效性. 相似文献
15.
基于Subbagging的支持向量回归(SVR)集成预测方法的目的有两个方面:一是理论分析上使得集成预测统计量成为不完全U统计量,二是计算上使得SVR复杂度显著降低.系统地研究了该方法的建模过程,重点讨论了采样尺寸参数对预测精度的影响,并通过真实案例分析验证了所建立的SVR集成预测方法的有效性. 相似文献
16.
基于LS-SVM的管道腐蚀速率灰色组合预测模型 总被引:1,自引:0,他引:1
为提高管道腐蚀速率预测精度,建立了一种基于最小二乘支持向量机的灰色组合预测模型.以各种灰色模型对管道腐蚀速率的预测结果作为支持向量机的输入,以管道腐蚀速率的实测值作为支持向量机的输出,采用最小二乘支持向量机回归算法和高斯核函数对支持向量机进行训练,利用训练好的支持向量机进行组合预测.预测模型兼具灰色模型所需原始数据少、建模简单、运算方便的优势和最小二乘支持向量机具有泛化能力强、非线性拟合性好、小样本等特性,弥补了单一预测模型的不足,避免了神经网络组合预测易于陷入局部最优的弱点.模型结构简单、实用,仿真结果验证了其有效性. 相似文献
17.
首先分析了影响广东省第三产业发展的主要因素,指出由于上述因素相互制约、相互影响,导致第三产业的发展呈现出高度的非线性特征,并使得单一的预测模型在预测效果和泛化能力方面难以胜任.在此基础上,提出了基于神经网络集成的组合预测模型,对广东省第三产业的发展进行预测,阐述了算法的基本原理和数据处理流程,实证分析表明:基于神经网络集成的组合预测模型要比单一预测模型的预测精度高. 相似文献
18.
考虑到高速公路行程时间影响因素繁多且行程时间序列非线性、非平稳特征显著,设计了基于经验模态分解和GRU神经网络的高速公路行程时间组合预测模型.首先,利用高速公路收费数据中车辆进出高速公路的时间信息获取路段行程时间序列;然后,利用经验模态分解算法,将复杂的行程时间序列分解为若干时间尺度不同、相对平稳的本征模态函数分量和残差分量;接着,使用GRU神经网络对各本征模态函数分量和残差分量进行预测与集成操作.实例分析表明:经验模态分解可有效提高LSTM、GRU神经网络的预测精度;在相同参数设置的情况下,GRU神经网络的预测精度优于LSTM神经网络. 相似文献
19.
提出了基于总体平均经验模态分解(EEMD)、最小二乘支持向量机(LSSVM)和BP神经网络的实用综合短期负荷预测方法,进行电力系统短期负荷预测.首先运用EEMD方法将非平稳的负荷序列分解,然后根据分解后各分量的特点选用最佳的核函数,利用最小二乘支持向量机分别对各分量进行预测,最后对各分量预测结果采用BP神经网络重构得到最终的预测结果.对实测数据的分析表明基于该综合方法的电力系统短期负荷预测具有较高的精度. 相似文献
20.
基于EMD分析,结合SVM方法构建了中国能源消费的预测模型,提供了一种新的能源消费预测思路.研究结果表明,到2020年我国能源消费量3027百万吨油当量,低于IEA2010能源展望中的预测结果.在低碳经济、节能减排已成为国际政治领域热点议题的背景下,采用定量的方法对中国能源消费状况进行分析与预测,有利于分析中国的国际政治压力及中国能源企业海外投资. 相似文献