首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
The growing frustration from facing energy shortages and unbalanced environmental issues has obstructed the long-term development of human society. Semiconductor-based photocatalysis, such as water splitting, transfers solar energy to storable chemical energy and is widely considered an economic and clean solution. Although regarded as a promising photocatalyst, the low specific surface area of g-C3N4 crucially restrains its photocatalytic performance. The macro-mesoporous architecture provides effective channels for mass transfer and full-light utilization and improved the efficiency of the photocatalytic reaction. Herein, g-C3N4 with an inverse opal (IO) structure was rationally fabricated using a well-packed SiO2 template, which displayed an ultrahigh surface area (450.2 m2·g-1) and exhibited a higher photocatalytic H2 evolution rate (21.22 μmol·h-1), almost six times higher than that of bulk g-C3N4 (3.65 μmol·h-1). The IO g-C3N4 demonstrates better light absorption capacity than bulk g-C3N4, primarily in the visible spectra range, owing to the multiple light scattering effect of the three-dimensional (3D) porous structure. Meanwhile, a lower PL intensity, longer emission lifetime, smaller Nyquist semicircle, and stronger photocurrent response (which synergistically give rise to the suppressed recombination of charge carriers) decrease the interfacial charge transfer resistance and boost the formation of photogenerated electron-hole pairs. Moreover, the existing N vacancies intensify the local electron density, helping increase the number of photoexcitons. The N2 adsorption-desorption test revealed the existence of ample mesopores and macropores and high specific surface area in IO g-C3N4, which exposes more active edges and catalytic sites. Optical behavior, electron paramagnetic resonance, and electrochemical characterization results revealed positive factors, including enhanced light utilization, improved photogenerated charge separation, prolonged lifetime, and fortified IO g-C3N4 with excellent photocatalytic performance. This work provides an important contribution to the structural design and property modulation of photocatalysts.   相似文献   

2.
近年来,利用太阳光光解水制氢被认为是解决当前能源短缺和环境污染问题的重要途径之一.众所周知,助催化剂可以有效的降低光催化产氢反应的活化能,提供产氢反应的活性位点,有效的促进催化剂中光生载流子的传输与分离,从而提高光催化剂产氢体系的反应活性和稳定性.然而,鉴于贵金属助催化剂(Pt, Au和Pd等)储量低、成本高,极大地制约了其应用.因而,开发出适用于光催化水分解制氢的非贵金属助催化剂尤为重要.石墨相氮化碳(g-C_3N_4)因其具有热稳定性、化学稳定性高以及制备成本低廉等优点,成为光催化领域研究的热点.然而,由于g-C_3N_4的禁带宽度(Eg=2.7 eV)较宽,致使其对可见光的响应能力较弱,并且在光催化反应过程中其光生电子-空穴对易复合,从而导致其光催化产氢活性较低.因此,如何开发出含非贵金属助催化剂的g-C_3N_4高效、稳定的太阳光催化分解水制氢体系引起了人们极大的关注.本文通过水热法-高温氨化法首次将非贵金属Ni_3N作为助催化剂来修饰g-C_3N_4,增强其可见光光催化性能(l420 nm).采用XRD、SEM、EDS、Mapping、UV-Vis、XPS和TEM等手段对Ni_3N/g-C_3N_4光催化体系进行了表征.结果表明, Ni_3N纳米颗粒成功的负载到g-C_3N_4表面且没有改变g-C_3N_4的层状结构.此外,采用荧光光谱分析(PL)、阻抗测试(EIS)和光电流谱进行表征,结果显示, Ni_3N纳米颗粒可有效促进催化剂中光生载流子的传输与分离,抑制电子-空穴对的复合.同时,将功率为300 W且装有紫外滤光片(λ420 nm)的氙灯作为可见光光源进行光催化产氢实验结果表明,引入了一定量的Ni_3N可以极大提高g-C_3N_4的光催化活性,其中, Ni_3N/g-C_3N_4#3的产氢量为~305.4μmol·h-1·g-1,大约是单体g-C_3N_4的3倍.此外,在450nm单色光照射下, Ni_3N/g-C_3N_4光催化产氢体系的量子效率能达到~0.45%,表明Ni_3N/g-C_3N_4具有将入射电子转化为氢气的能力.循环产氢实验表明, Ni_3N/g-C_3N_4在光催化产氢过程中有着较好的产氢活性和稳定性.最后,阐述了Ni_3N/g-C_3N_4体系的光催化产氢反应机理.本文采用的原料价格低廉,性能优异,制备简单,所制材料在光催化制氢领域展现出重要前景.  相似文献   

3.
光催化分解水制氢是应对能源危机和环境污染问题的途径之一,也是实现太阳能转化和储存的有效方法.其中,应用层面的一个关键制约因素是高效光催化剂的开发和制氢反应体系的构建,理论层面的一个关键科学问题是光生电子-空穴的高效分离及光生电子定向迁移,这两个层面的问题构成当前光催化分解水制氢研究的重大挑战.因此,稳定、高效催化剂的制备成为光催化领域重要的研究目标.类石墨烯氮化碳(g-C_3N_4)的结构与石墨相似,其层与层之间的范德华力使其具有良好的热稳定性和化学稳定性.g-C_3N_4是一种聚合物非金属半导体,由于具有与碳材料相似的层状堆积结构和sp~2杂化的π共轭电子能带结构,因此被认为是最有可能代替碳材料用于光催化分解水制氢的新型光催化材料.g-C_3N_4的室温禁带宽度为2.7eV左右,其价带和导带的位置完全覆盖了水的氧化-还原电位,因此理论上g-C_3N_4不仅能够氧化水为氧气,而且能够将水还原产氢,从而表现出优良的光电特性,成为新型太阳能转换材料.然而, g-C_3N_4在展示了良好研究前景的同时也存在一些缺陷,如比表面积较小及稳定性差等,这制约了g-C_3N_4在光催化领域的应用.为此,通过各种化学修饰对g-C_3N_4进行改性以提高其光催化活性和稳定性成为一个重要的研究方向.本文采用高温煅烧方法成功制备了Zn-Ni-P@g-C_3N_4催化剂.将一定量的g-C_3N_4、乙酸镍、乙酸锌和次亚磷酸钠均匀混合在一起并研磨成粉末,然后以3 oC/min的速率升温至300oC并在此温度下保持2h,自然冷却至室温后即得到Zn-Ni-P@g-C_3N_4催化剂,整个制备过程在氮气环境中进行.研究表明,在Zn与Ni摩尔比为1:3的Zn-Ni-P@g-C_3N_4催化剂上,当反应体系pH=10,在420nm光照下反应5h产氢量可达531.2μmol,是纯g-C_3N_4上的54.7倍.20h循环实验表明催化剂具有较好的光催化稳定性.对催化剂进行了XRD、TEM、SEM、XPS、N_2吸附、UV-vis DRS、瞬态光电流、FT-IR、瞬态荧光和Mott-Schottk等一系列表征,证明Zn-Ni-P的参与有效调变了电荷传输机制.SEM表征表明, Zn-Ni-P@g-C_3N_4为均匀排列的小颗粒,与纯g-C_3N_4相比其结构发生了改变,在Zn-Ni-P@g-C_3N_4结构中未发现g-C_3N_4纳米片的存在,说明Zn-Ni-P和g-C_3N_4成功复合.在上述研究基础上推测了可能的反应机理.  相似文献   

4.
以g-C_3N_4和BiVO_4为主要原料,用高温水热法合成出BiVO4/g-C_3N_4复合催化剂。采用X-射线衍射(PXRD)和紫外-可见漫反射吸收光谱(UV-Vis),对复合催化剂BiVO_4/g-C_3N_4的结构进行表征。在可见光下,考察此复合催化剂对亚甲基蓝的降解性能。研究发现,复合催化剂具有g-C_3N_4和BiVO_4结构特征,在X-射线衍射峰上显示出轻微的宽化,质量比为10%的BiVO_4/g-C_3N_4光催化剂降解活性最好,其降解率在360分钟能达到70.6%。  相似文献   

5.
6.
g-C3N4是一种新型的稳定的半导体光催化材料,它可以通过热缩聚法、固相反应法、电化学沉积法和溶剂热法等制备.g-C3N4禁带宽度约为2.7 eV,吸收边在460 nm左右,具有合适的导带位置,可用作可见光响应制氢的光催化材料,但在实际应用中g-C3N4光催化性能较低,其原因可归纳为:(1)g-C3N4在吸收光子产生电子和空穴对后,光生载流子的传输速率较慢,容易在体相或表面复合,致使g-C3N4的量子效率较低;(2)材料在合成过程中易于结块,使g-C3N4的比表面积远小于理论值,严重削弱了g-C3N4光催化材料的制氢性能.目前已有很多关于g-C3N4改性的报道,但一些方法对材料的处理过程耗时较长或者合成过程较难控制.用助剂改性是提高光催化制氢活性的半导体材料的主要策略之一.合适的助剂可改进电荷分离和加速表面催化反应,从而提高光催化剂的制氢活性.虽然稀有金属或贵金属,如铂、金和银可大大提高g-C3N4的制氢速率,但由于其昂贵和稀缺性,因而应用严重受限.因此,开发成本低、储量丰富、高性能助剂来进一步提高制氢性能具有重要意义.NiS2来源丰富、价格低廉.它可在酸性和碱性的环境保持相对较高的稳定性,且其表面电子结构表现出类金属特性.但它较难与半导体光催化剂形成强耦合和界面,通常需要水热等条件下合成.实验表明,g-C3N4表面存在着大量的含氧官能团及未缩合的氨基基团,为表面接枝提供了丰富的反应活性位点,因而可利用g-C3N4表面均匀分布的含氧官能团等和Ni2+结合,再原位与S2?反应,从而在g-C3N4上负载耦合紧密的NiS2助剂,进一步提高复合材料的光催化制氢活性.本文采用低温浸渍法制备了NiS2/g-C3N4光催化剂.NiS2助剂在温和的反应条件下与g-C3N4光催化剂复合,可以防止催化剂结构的破坏,同时使得助剂均匀地分散,并紧密结合在催化剂表面,从而大大提高光催化剂的制氢性能.该样品制备过程为:(1)通过水热处理制备含氧官能团和较大比表面积的g-C3N4;(2)添加Ni(NO3)2前驱体后,Ni2+离子由于静电作用紧密吸附在g-C3N4表面;(3)在80oC加入硫代乙酰胺(TAA),可在g-C3N4的表面紧密和均匀形成助剂NiS2.表征结果证实成功制备NiS2纳米粒子修饰的g-C3N4光催化剂.当Ni含量为3 wt%,样品表现出最大的制氢速率(116μmol h?1 g?1),明显高于纯g-C3N4.此外,对NiS2/g-C3N4(3 wt%)的样品进行光催化性能的循环测试结果表明:该样品在可见光照射下可以保持一个稳定的、有效的光催化制氢性能.根据实验结果,我们提出一个可能的光催化机理:即NiS2促进了物质表面快速转移光生电子,使g-C3N4光生电荷有效分离.基于NiS2具有成本低和效率高的优点,因而有望广泛应用于制备高性能的光催化材料.  相似文献   

7.
本研究通过一步搅拌法制备了BiPO_4/g-C_3N_4二元催化剂,以活性蓝19(RB19)为目标污染物,研究了其在可见光下的催化降解性能。采用X射线衍射(XRD)、透射电子显微镜(TEM)、紫外-可见漫反射光谱(DRS)和傅里叶红外光谱(FT-IR)等表征了催化剂的物化性质。结果表明:BiPO_4成功附着到g-C_3N_4上,并且分散效果较好,BiPO_4的掺入使g-C_3N_4的带隙变窄,提高了g-C_3N_4的可见光利用率,延长了光生电子-空穴对的寿命。最后通过分析推测出可能的光催化降解机理。  相似文献   

8.
以尿素作为原料, 采用熔盐辅助热聚合法在KCl-NaCl-BaCl2体系中制备了带隙可调的g-C3N4纳米结构. 采用X射线衍射仪、 扫描电子显微镜、 X射线光电子能谱仪、 紫外-可见漫反射光谱仪及荧光光谱仪对产物的结构、 形貌、 成分及光学性能进行了表征. 对g-C3N4纳米结构可见光条件下的光催化制氢性能进行了测试, 研究了不同的尿素/熔盐比对其光催化性能的影响. 结果表明, 熔盐辅助热聚合法制备的g-C3N4 纳米结构吸收光谱出现明显宽化, 吸收边由普通热聚合法制备g-C3N4的约450 nm红移至约500 nm左右. 同时光生载流子复合几率明显降低, 从而有效提升其光催化制氢性能. 最优化的g-C3N4(60)样品析氢速率达到12301.1 μmol?g?1?h?1, 为普通热聚合法制备g-C3N4析氢速率的4倍.  相似文献   

9.
用Zn(NO_3)_2、ZnCl_2、C_4H_6O_4Zn·2H_2O及三聚氰胺为原料,采用热解法合成ZnO/g-C_3N_4复合光催化剂。为了对合成产物的组成、形貌及光吸收性能进行表征,我们利用了X射线衍射(XRD)、扫描电子显微镜(SEM)及UV-Vis等。研究了不同物质含量热解及ZnO的含量对合成产物的影响,并且以六价铬为污染模拟物,对合成的ZnO/g-C_3N_4进行光催化进行评价。结果表明ZnO/g-C_3N_4复合材料有更优秀的光催化性能,用氯化锌为2. 5 wt%、热解温度为510°C、保温时间120 min时,合成的ZnO/g-C_3N_4光催化性能最佳,用氙灯照射270 min后,对六价铬溶液的降解率达到了93. 19%,比用样条件下单一的g-C_3N_4光催化性能提高了44. 92%。  相似文献   

10.
本文通过简单的一步水热法得到Ni2P-NiS双助催化剂,之后采用溶剂蒸发法将Ni2P-NiS与g-C3N4纳米片结合构建获得无贵金属的Ni2P-NiS/g-C3N4异质结。研究结果表明,优化后的复合材料具有良好的光催化产氢活性,其产氢速率最高可到6892.7 μmol·g-1·h-1,分别为g-C3N4 (150 μmol·g-1·h-1)、15%NiS/g-C3N4 (914.5 μmol·g-1·h-1)和15%Ni2P/g-C3N4 (1565.9 μmol·g-1·h-1)的46.1、7.5和4.4倍。这主要归因于Ni2P-NiS相比Ni2P和NiS单体具有更好的载流子转移能力,其与g-C3N4形成的肖特基势垒能有效促进光生载流子在二者界面上的分离,同时Ni2P-NiS能进一步降低析氢过电势,进而显著增强了表面析氢反应动力学。本研究为开发稳定、高效的非贵金属产氢助剂提供了实验基础。  相似文献   

11.
光催化分解水制氢被认为是解决当前能源危机和环境污染问题的重要途径之一.在众多光催化剂中,石墨相氮化碳(g-C3N4)因其具有高的热稳定性、高的化学稳定性、合适的能带位置以及成本低廉等优点,受到光催化领域研究者的广泛关注,成为研究热点.然而,由于g-C3N4的禁带宽度较大(Eg=2.7 eV),导致其对可见光的响应较差,而且光生电子-空穴对在其中易于复合,从而导致其光催化产氢活性较低.已有研究表明,助催化剂可以有效地促进催化剂中光生载流子的分离和传输,从而提高光催化剂的光催化活性和氢气的产生速率.目前使用最广泛的助催化剂多为贵金属(Au,Ag,Pt和Pd等),然而贵金属储量低、成本高,极大地限制了其实际应用.因而,开发适用于光催化水分解制氢的非贵金属助催化剂成为该领域的研究热点.其中,用非贵金属助催化剂修饰g-C3N4制备高效光催化剂分解水制氢技术引起了人们极大的兴趣.过渡金属磷化物(FeP,CoP,CuP,NiP等)是一种有效的光催化辅助催化剂.然而,这些金属磷化物的合成通常使用有毒的有机磷化合物和白磷或涉高温煅烧.特别是在传统水热法制备金属磷化物过程中会释放大量氢气,导致容器内压力过高,造成较大的安全问题.据报道,在这些磷化物中,磷化钴由于其合适的能带结构和较高的导电性,作为光催化分解水助催化剂受到了广泛关注.然而,截至目前,关于磷化钴作为助催化剂用于光催化的实用技术报道很少,特别是在温和条件下制备磷化钴修饰的g-C3N4复合光催化剂的研究还有待进行.本文研究了以CoP作为助催化剂来改进g-C3N4(制备g-C3N4/CoP),并用于光催化水裂解制氢气.复合光催化剂g-C3N4/CoP经由两步反应合成.第一步采用尿素热分解法制备g-C3N4,第二步通过化学镀法将CoP修饰在g-C3N4表面.采用XRD,TEM,UV-DRS和XPS等手段表征了g-C3N4/CoP光催剂的性质.结果表明,CoP以量子点(QDs)形式均匀分布在g-C3N4表面,显著提高了g-C3N4的光催化活性.不同CoP负载量的样品中,g-C3N4/CoP-4%表现出优异的光催化活性,H2生成速率为936μmol g^-1 h^-1,甚至高于4%Pt负载的g-C3N4(H2的生成速率仅为665μmol g^-1 h^-1).从紫外可见光谱上看,g-C3N4在451 nm达到吸收波长上限,但与CoP复合后,g-C3N4/CoP-4%的吸收波长上限延展到497 nm.此外,光致发光和光电流测试结果证实,将CoP量子点负载到g-C3N4上不仅可以降低光生电荷-空穴对的复合,而且可以改善光生e--h+对的转移,从而提高光催化剂的产氢性能.这项工作为开发高效的非贵金属助催化剂修饰g-C3N4的技术提供了一个可行策略,所制材料在光催化制氢领域显示出潜在的应用前景.  相似文献   

12.
The rational construction of a high-efficiency stepscheme heterojunctions is an effective strategy to accelerate the photocatalytic H2.Unfortunately,the variant energy-level matching between two different semiconductor confers limited the photocatalytic performance.Herein,a newfangled graphitic-carbon nitride(g-C3N4)based isotype step-scheme heterojunction,which consists of sulfur-doped and defective active sites in one microstructural unit,is successfully developed by in-situ polymerizing N,N-dimethylformamide(DMF)and urea,accompanied by sulfur(S)powder.Therein,the polymerization between the amino groups of DMF and the amide group of urea endows the formation of rich defects.The propulsive integration of S-dopants contributes to the excellent fluffiness and dispersibility of lamellar g-C3N4.Moreover,the developed heterojunction exhibits a significantly enlarged surface area,thus leading to the more exposed catalytically active sites.Most importantly,the simultaneous introduction of S-doping and defects in the units of g-C3N4 also results in a significant improvement in the separation,transfer and recombination efficiency of photo-excited electron-hole pairs.Therefore,the resulting isotype step-scheme heterojunction possesses a superior photocatalytic H2 evolution activity in comparison with pristine g-C3N4.The newly afforded metal-free isotype step-scheme heterojunction in this work will supply a new insight into coupling strategies of heteroatoms doping and defect engineering for various photocatalytic systems.  相似文献   

13.
朱必成  张留洋  程蓓  于岩  余家国 《催化学报》2021,42(1):115-122,后插10
气体分子与光催化剂之间的相互作用对于光催化反应的触发非常重要.对于TiO2,ZnO和WO3等传统金属氧化物光催化剂上的水分解反应而言,已有许多报道研究了水分子在它们表面的吸附行为.结果表明,水分子与催化剂表面的原子形成了O-H…O氢键.石墨相氮化碳(g-C3N4)是一种具有可见光响应且化学性质稳定的光催化剂,对其进行修饰以增强其分解水产氢性能的研究非常多.本文通过密度泛函理论计算,全面研究了水分子在均三嗪(s-triazine)基g-C3N4上的吸附情况.首先构建了一系列初始吸附模型,考察了各种吸附位和水分子的朝向.通过比较分析计算得到的吸附能,确定了一种最优的吸附构型,即水分子以竖直的朝向吸附于褶皱的单层g-C3N4表面.水分子中的一个极性O-H键与g-C3N4中一个二配位富电子的氮原子结合形成了分子间的O-H…N氢键.其中,H原子与N原子的间距为1.92?,O-H键的键长由0.976?增至0.994?.进一步通过计算Mulliken电荷,态密度和静电势曲线分析了该吸附体系的电子性质.结果发现在分子间氢键的桥接作用下,g-C3N4上的电子转移至水分子,由此导致g-C3N4的费米能级降低,功函数由4.21 eV增至5.30 eV.在该吸附模型的基础上,考查了不同的吸附距离.当水分子与g-C3N4的间距设为1至4?时,几何优化后总是能得到相同的吸附构型,吸附能和氢键长度也十分相近.随后,通过改变吸附基底g-C3N4的大小和形状,验证了这种吸附构型具有很强的重复性.将2′2单层g-C3N4吸附基底替换为2′2多层g-C3N4(2至5层),3′3和4′4单层g-C3N4,以及具有不同管径的单壁g-C3N4纳米管后,水分子的吸附能随着体系原子数的增多而增大,但吸附模型的几何结构和电子性质基本不变,包括O-H…N氢键的形成和键长,以及电子转移和增大的功函数.另外还研究了非金属元素(P,O,S,Se,F,Cl和Br)掺杂对吸附能的影响.构建模型时,杂质原子以取代二配位氮原子的方式进行掺杂,水分子放置于杂质原子上方.结果显示,引入杂质原子后水分子的吸附能增大,在理论上从吸附的角度解释了元素掺杂增强g-C3N4分解水活性.总之,本文揭示了一种在分子间氢键的作用下,具有高取向性的水分子吸附的g-C3N4构型,这有助于g-C3N4基光催化剂上水分解过程的理解和优化设计.  相似文献   

14.
Ag nanoparticles (NPs) were deposited on the surface of g-C3N4 (CN) by an in situ calcination method. NiS was successfully loaded onto the composites by a hydrothermal method. The results showed that the 10 wt%-NiS/1.0 wt%-Ag/CN composite exhibits excellent photocatalytic H2 generation performance under solar-light irradiation. An H2 production rate of 9.728 mmol·g?1·h?1 was achieved, which is 10.82-, 3.45-, and 2.77-times higher than those of pure g-C3N4, 10 wt%-NiS/CN, and 1.0 wt%-Ag/CN composites, respectively. This enhanced photocatalytic H2 generation can be ascribed to the co-decoration of Ag and NiS on the surface of g-C3N4, which efficiently improves light harvesting capacity, photogenerated charge carrier separation, and photocatalytic H2 production kinetics. Thus, this study demonstrates an effective strategy for constructing excellent g-C3N4-related composite photocatalysts for H2 production by using different co-catalysts.  相似文献   

15.
李乃旭  黄美优  周建成  刘茂昌  敬登伟 《催化学报》2021,42(5):781-794,中插9-中插14
光催化CO2还原制备太阳燃料被广泛关注并逐渐形成研究热点,该过程利用可再生清洁能源太阳能,在低温低压的温和条件下驱动CO2还原制备CO、CH4、CH3OH等燃料气体或者高附加值的碳氢化合物.半导体光催化剂能够将清洁的太阳能有效地转化为化学能,其中,g-C3N4由于其成本低、毒性低、稳定性高和带隙窄等优点,被广泛应用于光...  相似文献   

16.
含有机物工业废水的处理仍然是人类实现可持续发展的重大挑战.而光催化作为一种先进的氧化环保技术,以其反应条件温和、能耗相对较低的优点在有机废水处理中受到越来越多的关注.近年来,人们设计和合成了许多不同结构和形状的光催化剂.特别是金属氧化物半导体以其适宜的能带结构、稳定的物化性质、无毒性等特点已成为光催化降解有机废水的研究热点.此外,一维纳米结构(1D)已被证实有利于光催化降解过程,其优势在于比表面积大,离子的迁移路径短,以及独特的一维电子转移轨道.尤其是TiO2纳米纤维由于其亲水性、特殊的形貌和合适的能带位置,在污染物水溶液的处理中表现出优异的光催化性能.然而,TiO2(~3.2 eV)的宽禁带、光生载流子的易复合等缺陷导致其光利用率较低,限制了其实际应用.因此,人们提出了许多提高光催化活性的策略,如掺杂金属或非金属元素、负载贵金属、构建异质结等.构建梯形(S型)异质结已被证实是提高复合材料光催化活性的一种有前途的策略.S型异质结不仅能有效地分离光生电子和空穴,而且还原能力低的半导体CB上的电子和氧化能力低的半导体VB上的空穴复合,而氧化还原能力较强的空穴和电子分别被保留.因此,这一电子转移过程赋予了复合物最大的氧化还原能力.同时,在g-C3N4中引入硫元素可以拓宽其光吸收范围,从而产生更多的光生载流子.此外,额外的表面杂质将有助于e?-h+对的分离,其光催化活性明显高于单纯的g-C3N4.综合一维纳米结构、硫掺杂和S型异质结的优势,本文采用静电纺丝和煅烧法制备了一系列硫掺杂的g-C3N4(SCN)/TiO2 S型光催化剂.制备的SCN/TiO2复合材料在光催化降解刚果红(CR)水溶液中表现出比纯TiO2和SCN更优越的光催化性能.光催化活性的显著增强是由于一维分布的纳米结构和S型异质结.此外,XPS分析和DFT计算表明,电子从SCN通过SCN/TiO2复合材料的界面转移到TiO2.在模拟太阳光照射下,界面内建电场、带边缘弯曲和库仑相互作用协同促进了复合物相对无用的电子和空穴的复合.因此,剩余的电子和空穴具有较高的还原性和氧化性,使复合材料具有最高的氧化还原能力.这些结果通过自由基捕获实验、ESR实验和XPS原位分析得到了充分的验证,说明光催化剂中的电子迁移遵循S型异质结机理.本文不仅可以丰富了新型S型异质结光催化剂的设计和制备方面的知识,并为未来解决环境污染问题提供一个有前景的策略.  相似文献   

17.
随着工业技术的飞速发展,大量有机污染物被应用于生活的各个领域,由此带来了严重的环境问题。众所周知,半导体光催化技术是一种有效且环境友好的降解去除典型污染物的方法,而光催化剂在该技术的应用中起着关键作用。因此,在光催化污染物降解领域,人们已经尝试研究了各种半导体材料。其中石墨相氮化碳(g-C3N4)是近年来公认的“明星”材料之一。因其独特的二维层状结构和良好的可见光响应而引起了人们的极大兴趣。由于带隙较窄(~2.7 eV)、能带结构可调以及良好的物理化学稳定性,g-C3N4对太阳光谱的吸收可达450 nm,具有一定的可见光光催化性能。然而,g-C3N4在去除抗生素和染料方面的降解效率仍然存在不足,例如光生电荷的快速复合以及空穴的氧化能力弱等。为了优化这种有前景的光催化材料,人们尝试了多种方法来改善g-C3N4的电子能带结构,例如金属/非金属元素掺杂、形貌调控和官能团修饰等。最近,人们提出了由两种N型半导体光催化剂组成的梯形异质结理念,它可以利用半导体材料更正的价带和更负的导带。相关结果表明,构筑梯形异质结是提高g-C3N4光催化活性的最有效方法之一。因此,本文通过简单的原位溶剂热生长法制备了新型0D/2D Bi4V2O11/g-C3N4梯形异质结光催化剂。Bi4V2O11/g-C3N4复合材料对去除土霉素(OTC)和活性红染料展示出了优异的光催化活性。尤其是BVCN-50复合材料对OTC和活性红的降解效率高达74.1%和84.2%,该过程的主要活性物种为·O2-。大幅增强的光催化性能归因于Bi4V2O11和g-C3N4之间形成的梯形异质结保持了光催化体系的强氧化还原能力(Bi4V2O11的强氧化能力和g-C3N4的强还原能力),并促进了光生电荷的空间分离。此外,金属Bi0的表面等离子共振效应可以拓宽异质结系统的光吸收范围。此外,基于高效液相色谱-质谱联用(LC-MS)分析,我们研究了OTC降解过程中可能的中间体和降解路径。这项工作为设计和制备g-C3N4基梯形异质结用于抗生素和活性染料降解提供了一种新的策略。  相似文献   

18.
采用水热方法制备了ZnIn2S4/g-C3N4复合材料, 并通过X射线衍射(XRD)、 傅里叶变换红外光谱(FTIR)、 紫外-可见漫反射光谱(UV-Vis DRS)、 透射电子显微镜(TEM)和荧光光谱(PL)等手段对其结构和性能进行表征. 结果表明, 当ZnIn2S4的负载量为20%(质量分数)时, 复合材料表现出最佳的光催化制氢性能, 制氢速率可达到637.08 μmol·g-1·h-1, 分别为纯ZnIn2S4和纯g-C3N4的4倍和37倍. 其原因在于ZnIn2S4和g-C3N4之间具有紧密的异质结结构, 两者有效的结合改善了组分的能带匹配和界面电荷转移, 从而大幅增强了载流子的分离和迁移, 进而提高光催化的性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号