首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
氨在化肥、染料、药品和炸药的制造中起着重要作用.目前,传统的Haber-Bosch工艺主要用于NH3的大规模工业化生产,在苛刻的反应条件(300~500℃,150~300 atm)下不可避免地伴随着温室气体的过量排放.因此,必须寻求一种绿色并且可持续的方法来生产NH3.电化学还原N2 (NRR)已成为在环境条件下将N2连续固定NH3的一种有吸引力的替代方法.由于稳定的N-N具有较强的偶极矩并与析氢反应存在激烈竞争,因此需要高效的NRR催化剂.TiO2是典型的n型半导体,被认为是一种很有前途的NRR电催化剂.最近的研究表明,La2O3对N2还原电催化也具有活性,然而镧金属的稀土性质限制了其大规模应用.本文研究发现镧可以作为一种有效的掺杂剂提高TiO2的NRR活性.通过水热法制备了镧掺杂的TiO2纳米棒(La-TiO2).透射电子显微镜结果表明,原始TiO2与La-TiO2在形貌上都是纳米棒,镧的引入对其形貌并没有显著影响.选区电子衍射证实了La-TiO2纳米棒的高结晶度和四边形单晶结构.电子自旋共振分析结果表明La-TiO2纳米棒中存在氧空位.La-TiO2的线性扫描伏安曲线结果表明,在N2饱和电解液中的电流密度明显大于在Ar饱和电解液中,说明NRR的发生.为了进一步证实这一假设,在五个不同电位下分别进行了一系列的计时电流测试,结果表明,连续电解2h后在-0.70 V时,NH3产率最高,达23.06 μg h-1 mgcat-1,并且法拉第效率也最大,达14.54%.此外,电解2h后,没有检测到副产物N2H4,表明La-TiO2催化剂对NH3合成具有良好的选择性.本文还比较了La-TiO2/CP,TiO2/CP和CP的NRR电催化性能,结果表明,La-TiO2/CP的NH3产率最高,说明La的引入提高了La-TiO2的NRR活性.La-TiO2/CP通过在-0.70 V下连续6次循环测试以及连续48 h电解测试证实La-TiO2对NRR电催化具有良好的电化学稳定性.通过对La-Ov构型进行密度泛函理论计算,重点研究*N2+H++e-→*NNH的反应步骤,由于*N2加氢的自由能垒较低,La-TiO2更容易激活N2分子,计算了La-TiO2和纯TiO2上*NNH中间体的电荷密度差异,*NNH与La-TiO2之间存在更多的电荷转移.采用N-N键的积分晶体轨道哈密顿布居(ICOHP)分析出La-TiO2的ICOHP负值较小(-16.67 vs.-19.93),说明N-N键的活化更多.  相似文献   

2.
通过溶胶-凝胶法制备了三种过渡金属掺杂的TiO_2纳米颗粒(TiO_2-M, M=Cu, Mn, Pd),XRD和XPS等结构表征结果表明掺杂的金属以-O-M-O-的不饱和配位形式存在于TiO_2纳米颗粒表面.在N_2饱和的0.01 mol·L~(-1) K_2SO_4溶液中,-0.55 V(vs. Ag/AgCl)阴极电位下分别测试了三种TiO_2-M颗粒的电催化合成氨性能,其中TiO_2-Pd催化合成氨速率(R_(NH_3))达到1.54×10~(-11) mol·s~(-1)·cm~(-2),但电流效率(FE)只有0.78%;而TiO_2-Cu的R_(NH_3)为9.77×10~(-12) mol·s~(-1)·cm~(-2),而FE达到15.33%.线性扫描伏安测试结果表明三种催化剂的析氢催化活性顺序为TiO_2-Pd TiO_2-Mn TiO_2-Cu,且阴极电位负移导致电催化合成氨FE下降,意味着电催化合成氨的电流效率与催化剂自身的析氢催化活性密切相关.  相似文献   

3.
NH_3作为一种必需的活化氮源,在化肥、染料、爆炸物和药物等的制造中起到了关键作用;同时,它也是一种在交通运输领域具有吸引力的无碳能源载体.工业上生产氨气使用典型的哈伯-博世工艺,但是此工艺涉及大量的能源消耗和碳排放,给环境带来巨大的压力.电化学氮还原反应(NRR)能够在温和环境下实现环境友好、节能的氨合成,但此过程需要高效的电催化剂.高效的NRR催化剂(Au、Ag、Pd和Ru)储量少、成本高,阻碍了它的实际应用.因此,设计和开发由地球上丰富的元素制成的具有成本效益的催化剂来代替NRR催化剂意义重大.本课题组最近的研究(Chem.Commun.,2018,54,12966–12969)表明,SnO_2在环境条件下具有电催化氧化活性,但其低电导率限制了其性能,可通过氟掺杂或石墨烯杂化予以解决.氧化铟锡(ITO)作为一种含SnO_2的材料,导电性好,可望用于NRR的高效电催化剂中.因此,本文采用商用氧化铟锡玻璃(ITO/G)作为催化剂电极,在温和环境条件下进行N_2-NH_3的电化学转化,并呈现出对生成氨气有较高的选择性.XRD和XPS结果表示,商用ITO/G中存在In,Sn和O元素;SEM显示ITO/G具有清晰的纳米薄膜结构和267 nm的截面厚度;相应的EDX谱图显示In,Sn和O元素分布均匀,且原子比为32.11:3.16:64.74.采用紫外-可见光谱及线性扫描伏安和恒电位极化等电化学测试研究了商用ITO/G的NRR活性.在0.5 M Li Cl O_4电解液中测试时,于–0.40 V vs.RHE条件下,ITO/G的NH_3产率为1.06?10~(–10) mol s~(–1) cm~(–2),其法拉第效率为6.17%.~(15)N同位素标记实验证实了所测到的NH_3是由ITO/G催化的N_2电还原反应生成的.利用第一性原理计算探讨了在ITO催化剂上可能的NRR反应机理,确定了ITO催化剂的NRR活性位点、N_2化学吸附活性位点以及NRR的反应途径.此外,24 h恒电位(–0.40 V vs.RHE)极化测试和2 h恒电位极化(–0.40 V vs.RHE)测试后的XRD和SEM结果表明,该催化剂具有较高的电化学稳定性.综上所述,商用ITO/G用作在环境条件下将N_2转化为NH_3的有效催化剂电极,将为开发人工固定氮气的ITO基纳米结构提供一种研究途径.  相似文献   

4.
氮氧化物(NO_x)是主要的大气污染物之一.氨气选择性催化还原法(NH_3-SCR)是目前去除固定源排放的氮氧化物的最有效方法,被广泛用于燃煤或者生物质的火电厂中.催化剂是NH_3-SCR法的核心,其中V_2O_5-WO_3/TiO_2催化剂是主要的商业SCR催化剂;但是V_2O_5有毒,对环境的影响很大;另外,该催化剂具有较高的SO_2氧化性能.因而研究者一直在探索新型的SCR催化剂.SO_2是燃煤电厂烟气中的典型气体之一,所以抗硫性能是催化剂的一个重要指标.在SCR反应条件下,SO_2和O_2容易与氧化物催化剂发生反应生成稳定性较高的硫酸盐,覆盖在催化剂表面从而引起催化剂失活.但已有研究发现,硫化会提高K中毒后的V_2O_5-WO_3/TiO_2催化剂的活性.并且,短时间的硫化可以明显提高CuO/Al_2O_3的NH_3-SCR活性.硫酸盐催化剂或许具有较低毒性和较高抗硫性能,应该是一种有前景的SCR催化剂.本文以商业纳米TiO_2为载体,采用湿式浸渍法制备了一系列的CuSO_4/TiO_2催化剂.在自制的活性评价装置上测试了样品的NH_3-SCR活性并且在340℃下连续24 h测试了SO_2、水蒸气及两者共同作用对催化剂活性的影响.使用N_2等温吸附-脱附、X射线衍射(XRD)、X射线光电子能谱(XPS)、H_2程序升温还原(H2-TPR)和NH_3程序升温脱附(NH_3-TPD)对催化剂进行了表征.另外,采用原位红外漫反射光谱研究了CuSO_4/TiO_2催化剂上的NH_3-SCR反应过程.N_2等温吸附-脱附结果表明,负载的CuSO_4没有明显改变载体的孔结构.而XRD结果仅显示锐钛矿TiO_2的衍射峰,说明CuSO_4在载体上有较好的分散度或者CuSO_4的含量低于检测限.XPS结果显示,催化剂中的铜主要以Cu~(2+)形式存在,硫主要以SO_4~(2-)形式存在,而氧主要以晶格氧和吸附氧两种形式存在,并且CuSO_4的存在会增加催化剂中吸附氧的含量.H_2-TPR结果表明,随着CuSO_4含量的增加,催化剂的氧化还原能力逐渐增强.NH_3-TPD结果表明,催化剂表面的酸性位数目随着样品中CuSO_4含量的增加而增加.纯TiO_2的NH_3-SCR活性很差,当温度从300℃增加到450℃时,最高NO_x转化率仅为32.7%.但当CuSO_4负载到TiO_2上以后,催化剂活性明显提高.在反应温度高于340℃时,CuSO_4/TiO_2催化剂的NO_x转化率在94%以上,与商业V_2O_5-WO_3/TiO_2催化剂相当,并且其N_2O生成量低于商业催化剂.不过,当温度低于340℃时,CuSO_4/TiO_2催化剂的NO_x转化率明显低于商业催化剂,说明CuSO_4/TiO_2催化剂的活性仍有待改善.连续24 h测试了SO_2、水蒸汽及两者的共同作用对CuSO_4/TiO_2催化剂活性的影响.结果显示,单独的水蒸气会导致活性轻微下降,但SO_2以及两者共同存在时对催化剂的活性基本没有影响.CuSO_4/TiO_2催化剂的NH_3吸附红外光谱表明,催化剂上存在Lewis和Bronsted两种酸性位,但Bronsted酸性位上的NH_4~+稳定性较差,280℃时即基本消失.在高温时,NH_3主要吸附在Lewis酸性位上且CuSO_4/TiO_2催化剂对NO_x的吸附能力较差,红外光谱未检测到NO_x的吸附峰.380℃下,当NO和O_2通入预吸附NH_3的催化剂样品时,属于Lewis酸性位上NH_3的红外峰明显下降,说明Lewis酸性位上吸附的NH_3参与了反应.CuSO_4/TiO_2显示出高的抗硫抗水性能和比较好的NH_3-SCR活性,应该是一种有应用前景的SCR催化剂.CuSO_4可以增加催化剂的酸性位数目和吸附氧量.根据原位红外漫反射结果,CuSO_4/TiO_2上的SCR反应遵循Eley-Rideal机理.气相的NO与吸附在Lewis酸性位上的NH_3反应生成N_2和H_2O或许是主要的反应途径,并且吸附氧可能会促进这个过程.  相似文献   

5.
商业选择性催化还原(SCR)催化剂成分主要有V_2O_5,WO_3和TiO_2,但适用温度窗口较窄(300-400℃),使得实际操作过程中活性较低.目前,过渡金属广泛应用于催化剂制备中以提高其催化活性.相比于纯TiO_2和ZrO_2载体,TiO_2-ZrO_2具有较高的热稳定性以及较多的酸位,虽然有关TiO_2-ZrO_2为载体的催化剂研究较多,但未与商业催化剂进行对比研究.而针对NH_3-SCR脱硝机理的实验研究也存在一些争议,主要原因归为以下两方面:(1)多数催化剂不同会直接导致催化剂的活性酸位不同;(2)不同NH_3-SCR脱硝催化剂的起活温度不同.同时,NH_3和NO在反应温度的吸附情况仍需要进一步研究.因此,有必要深入探究NH_3-SCR脱硝机理,以解决现行研究中存在的问题.本文首先采用共沉淀法制备摩尔比为1:1的TiO_2-ZrO_2固溶体,并分步浸渍不同质量比的WO_3和1%V_2O_5,最终得到一系列1%V_2O_5-x%WO_3/TiO_2-ZrO_2.然后通过X射线衍射(XRD)和比表面积测试(BET)、程序升温还原(TPR)、原位漫反射红外光谱(in situ DRIFTS)研究了WO_3和ZrO_2对催化性能的影响以及V_2O_5-WO_3/TiO_2-ZrO_2催化剂的反应机理.N2物理吸附结果表明,WO_3的添加使得催化剂孔结构的热稳定性有所提高,同时随着WO_3含量增加催化剂的比表面积逐渐减小,但仍高于V_2O_5/TiO_2-ZrO_2催化剂;ZrO_2对催化剂比表面积增大效果比较明显.结合XRD结果表明,WO_3能促进金属氧化物在载体上的分散;相比于V_2O_5-WO_3/TiO_2催化剂,ZrO_2有利于活性组分的分散负载.比较系列V_2O_5-x%WO_3/TiO_2-ZrO_2的氨吸附情况,发现WO_3的添加增加了Br?nsted酸的稳定性,其中以9%WO_3的效果最显著.催化剂氨吸附中间物种(–NH_2)的发现,证实了WO_3添加促进了NH_3的活化,有利于脱硝反应的进行.SCR反应结果显示,V_2O_5-9%WO_3/TiO_2-ZrO_2催化剂在300–450 ℃时NO_x转化效率最优,并发现O_2的存在促进了NO_x的转化.采用in situ DRIFTS研究了V_2O_5-x%WO_3/TiO_2-ZrO_2催化剂脱硝机理,300和350 ℃时NH_3,NO,NO+O_2吸附情况表明,在真实的反应温度下,脱硝过程中的活性中心为Lewis酸中心,Br?nsted酸中心的NH4+极易从催化剂表面脱附,无法吸附在催化剂表面,且与NH_3相比,NO只能以NO_2的形式弱吸附在催化剂表面.因此,该催化剂遵循Eley-Ridel脱硝机理.而V_2O_5-9%WO_3/TiO_2-ZrO_2催化剂具有相对较高的脱硝效率,因此用来着重研究NH_3-SCR机理.在NH_3吸附过程中,NH_3(1204,1602,3156,3264,3347 cm~(-1))和活性中产物NH_2(1550 cm~(-1))在催化剂表面的吸附(恒温300 ℃)是稳定的;随后通入NO+O2时,NH_3吸附过程中的所有吸收峰(包括NH_2)均逐渐减小(NH_3吸附态与NO结合后分解为N_2和H_2O),同时出现H_2O的振动峰,这证明了V_2O_5-x%WO_3/TiO_2-ZrO_2催化剂的脱硝反应过程.各类气体吸附情况表明,NO在商业催化剂的吸附状态与V_2O_5-x%WO_3/TiO_2-ZrO_2催化剂相同;但NH_3吸附结果表明,Br?nsted酸中心和Lewis酸中心都是催化剂的活性中心;NO+O_2的通入使得催化剂表面的NH_3和NH~(4+)都逐渐消失.这两种催化剂脱硝反应过程差异主要在于催化剂表面活性中心的不同,导致了不同的NO_x脱除路径.通过in situ DRIFTS比较O_2的存在对脱硝反应产生的不同影响来确定O_2的作用.两类催化剂上O_2均参与了H_2O的形成,促进了催化反应的完成;当O_2不存在时,NO的还原受到了极大地抑制,同时也未出现H_2O;两者的脱硝效率大大降低.H_2-TPR和NH_3-TPR结果进一步证实O_2的作用主要是氧化NO及参与催化过程H_2O的形成.  相似文献   

6.
氮氧化物(NO_x)是大气污染的主要因素之一,对其排放的治理成为较为迫切的需求.氨气选择性催化还原法(NH_3-SCR)是目前减少NO_x排放中应用最为广泛的技术.目前,商业SCR催化剂主要是V_2O_5(WO_3,MO_3)/TiO_2,但其具有活性温度窗口窄、N2选择性低和对环境影响大等缺点.因此,新型的催化活性高且活性温度窗口宽的环境友好催化剂成为脱硝催化剂的研究热点.CeO_2因其独特的氧化还原性能和优异的储释氧能力在催化领域具有广泛应用,在NH_3-SCR中也研发出较多类型的铈基催化剂.我们课题组前期研发了具有优异脱硝性能的CeO_2(ZrO_2)/TiO_2催化剂,为拓展其应用范围,需要进行更深入的研究.理论上,Ti~(4+),Ce~(4+)以及Zr~(4+)离子的价态均高于Er~(3+),且离子半径相近.换言之,Er_2O_3能够与TiO_2以及CeO_2产生缺陷反应增大催化剂的缺陷浓度,进而提高催化剂的催化活性.本文以溶胶-凝胶法制备了一系列Er掺杂CeO_2(ZrO_2)/TiO_2催化剂,测试了样品的NH_3-SCR催化活性和N2选择性,并且在320°C下连续24 h测试了水蒸气、SO_2以及两者混合作用对催化剂活性的影响.使用X射线衍射(XRD)、N2等温吸附-脱附(N2-BET)、NH_3程序升温脱附(NH_3-TPD)、H2程序升温还原(H2-TPR)、光致发光光谱(PL)、电子顺磁共振(EPR)以及X射线光电子能谱(XPS)对催化剂进行了表征.XRD结果显示,Er掺杂后催化剂的结晶程度降低,且图谱中没有出现明显的Er_2O_3衍射峰,即Er在催化剂上有较好的分散度且掺杂抑制了催化剂的晶化.NH_3-TPD和H2-TPR结果表明,Er掺杂降低了酸强且提高了储释氧能力,催化剂的氧化还原能力则有所减弱.PL和EPR测试结果显示,掺杂后的催化剂氧空位浓度和Ti~(3+)浓度有所增加,与前期理论设计一致.XPS测试结果表明,掺入Er后催化剂的化学吸附氧含量和Ti~(3+)浓度增加,Ce~(3+)浓度基本不变,推测是CeO_2(ZrO_2)/TiO_2催化剂中掺入的Er主要与载体TiO_2,而不是与活性组分CeO_2或助剂ZrO_2产生缺陷反应的结果.CeO_2(ZrO_2)/TiO_2催化剂最高活性为94.28%,其活性温度窗口为230–390°C,掺入Er(Er:Ce=0.10:1)后,催化剂的整体活性尤其是350°C以下的催化活性具有明显提升,最高活性达到98.85%,活性温度窗口也拓展为220–395°C.单独的水蒸气对催化活性影响很小,SO_2会部分降低催化剂活性,而当两者混合作用时,催化剂活性下降最为显著,且Er掺杂后CeO_2(ZrO_2)/TiO_2催化剂的抗中毒能力有所增强.Er掺杂CeO_2(ZrO_2)/TiO_2催化剂显示出较好的抗硫抗水中毒能力以及较高的NH_3-SCR催化活性和N2选择性,应该是一种具有应用前景的SCR催化剂.Er掺杂降低了催化剂的酸强,抑制了TiO_2和铈锆固溶体的晶化,提高了Ti~(3+)和氧空位浓度并增强了储释氧能力,是CeO_2(ZrO_2)/TiO_2催化剂活性提高的主要原因.  相似文献   

7.
氮氧化物(NO_x,主要包括NO和NO_2)是主要的大气污染物之一,造成酸雨,光化学烟雾和臭氧层破坏等环境问题,甚至直接危害人体健康.化石燃料燃烧和汽车尾气排放是NO_x的主要来源,严格控制火力发电厂,大型锅炉,汽车尾气等污染源中NO_x的排放刻不容缓.以NH_3为还原剂选择性催化还原NO_x(NH_3-SCR)是目前公认的最有效的NO_x脱除技术,然而在催化NO_x还原为N_2的过程中往往伴随着副产物N_2O的生成,降低了催化剂的选择性,造成温室气体效应和破坏臭氧层等环境问题.因此充分理解NH_3-SCR过程中N_2O的形成机理对于抑制N_2O的产生、提高催化剂的选择性十分重要.本文将高度分散的Pd纳米团簇负载在Ce O_2纳米棒上制成Pd/Ce O_2催化剂,结合NH_3-TPD, NO-TPD和原位傅里叶转换红外光谱等表征手段研究了无氧条件下该催化剂上利用NH_3催化还原NO过程中N_2O的产生路径.结果表明, N_2O的形成途径与反应温度和反应气体的浓度相关.当反应气体中NH_3含量大于化学计量比时,在反应温度低于200°C时,由NH_3活化产生的吸附态H·自由基与催化剂表面吸附的NO反应先生成中间产物HON,两个HON分子进一步反应生成N_2O;过量的吸附态的H·自由基也可以与HON反应生成N_2,所以低温下(200°C)随着反应气氛中NH_3的增加,解离生成的H·也随之增加,促进反应向着生成N_2的方向进行,从而抑制了N_2O的产生.随着反应温度增加, NH_3解离产生的H·被CeO_2表面的O捕获形成羟基,中间产物HON的生成被切断,从而阻断了N_2O的生成.同时由于体系中含有大量的NH_3,吸附态的NO会优先与活化态的NH_3物种反应生成N_2,阻碍了NO解离生成N_2O这一过程的发生,因此NH_3过量情况下在高温下观察不到N_2O的产生,可获得100%的N_2选择性.但是当反应气体中的NH_3含量不足时,即体系中含有过量的NO,当反应温度高于250°C, NO可在催化剂表面解离生成吸附态的N·自由基和O·自由基, N·自由基可进一步与吸附态的NO反应生成N_2O, NO的解离是N_2O生成的速控步,还原性吸附物种对O·自由基的捕捉将有利于N_2O的生成.当反应温度介于200–250°C, NH_3解离产生的H·自由基既可以与NO结合生成HON中间产物,又能被CeO_2表面的O捕获形成羟基,两个反应之间存在竞争,此时N_2O产生与反应气体浓度之间的关系不再呈单调变化.  相似文献   

8.
高效析氢催化剂的制备仍是目前亟待解决的重要课题。本研究采用液相浸渍原位还原法制备了Ni(OH)_2/Ni/gC_3N_4复合催化剂,并与碳纸(CP)组合作为微生物电解电池(MEC)的阴极。采用SEM、TEM、XRD、XPS和电化学分析等技术对所制备的催化剂样品的结构性质和析氢电催化性能进行了分析研究。结果表明,Ni(OH)_2/Ni/g-C_3N_4催化剂在100 A/cm~2的电流密度驱动下具有优秀的析氢过电位(1881 mV)、较低的电荷转移电阻(10.86Ω)和较低的塔费尔斜率(44.3 mV/dec),其电化学活性优于纯g-C_3N_4催化剂和CP,甚至可与Pt催化剂媲美。  相似文献   

9.
甲醛是室内装修污染的重要组分,已严重危害到人们身体健康,在室温条件下消除甲醛引起了人们的广泛兴趣.目前室温清除甲醛主要有物理吸附法、光催化法、等离子体技术及催化氧化技术.物理吸附法主要采用活性炭等作为吸附剂,其初期吸附效果较好,但当吸附饱和之后会重新释放甲醛造成二次污染;光催化法和等离子体技术需要特殊装置,不适合室内室温环境脱除甲醛;而催化氧化技术则可直接将甲醛转化为无毒无害的水和CO2,因而备受关注.Pt/TiO_2被认为是目前消除甲醛最有效的催化剂.为进一步降低贵金属Pt的用量及增强其稳定性(Pt被氧化后其活性会降低),本文首次采用稀土La掺杂锐钛矿型TiO_2,负载少量Pt后用于室内低浓度(0.5 ppm)甲醛的催化氧化.活性测试结果表明,纯TiO_2催化剂上甲醛转化率在5%以下,有可能是物理吸附或可见光催化所致.负载0.5%Pt后,Pt/TiO_2和Pt/La-TiO_2甲醛转化率均高于80%,尤其是La掺杂活性高达96%以上,且在连续反应8 h甚至延长至40 h后其活性均未见下降趋势.电镜结果表明,La掺杂Pt/La-TiO_2催化剂中Pt粒径从未掺杂的2.2 nm降至1.7 nm;CO程序升温脱附测试表明,Pt/La-TiO_2/Pt的分散度达66%,而未掺杂样品仅为51%;X射线光电子能谱测试表明,Pt/La-TiO_2的表面氧物种高于Pt/TiO_2催化剂,说明La掺杂增强了Pt和载体间的相互作用.为探讨Pt/La-TiO_2商业化应用前景,将粉体Pt/La-TiO_2涂覆在堇青石蜂窝陶瓷上制备成整体催化剂.该整体催化剂在容积为2 m3的密室测试中5 min内即可将浓度为0.5 ppm的甲醛将至0.02 ppm以下.该催化剂在存放3个月后活性略有下降,但在10 min内仍可将甲醛浓度降至0.08ppm,达到室内甲醛排放标准.综上,本文成功制备了La掺杂Pt/La-TiO_2用于室内低浓度甲醛催化氧化,该催化剂表现出优异的催化性能.通过多种表征手段表明,La修饰后贵金属Pt纳米粒子尺寸减小、分散度提高及Pt与载体间相互作用增强是其活性优异的主要原因.以Pt/La-TiO_2粉体制备的整体催化剂同样表现出了高的催化性能,具有工业应用前景.  相似文献   

10.
Designing active,robust and cost-effective catalysts for the nitrogen reduction reaction(NRR) is of paramount significance for sustainable electrochemical NH3 synthesis.Transition-metal diborides(TMB_2)have been recently theoretically predicted to be a new class of potential NRR catalysts,but direct experimental evidence is still lacking.Herein,we present the first experimental demonstration that amorphous FeB_2 porous nanosheets(a-FeB_2 PNSs) could be a highly efficient NRR catalyst,which exhibited an NH3 yield of 39.8 μg h-1 mg-1(-0.3 V) and a Faradaic efficiency of 16.7%(-0.2 V),significantly outperforming their crystalline counterpart and most of existing NRR catalysts.First-principle calculations unveiled that the amorphization could induce the upraised d-band center of a-FeB_2 to boost d-2π~* coupling between the active Fe site and ~*N_2 H intermediate,resulting in enhanced ~*N_2 H stabilization and reduced reaction barrier.Out study may facilitate the development and understanding of earth-abundant TMB_2-based catalysts for electrocatalytic N_2 fixation.  相似文献   

11.
利用共沉淀及共浸渍法制备了一系列不同TiO_2含量(0,5,10,15,20 wt.%)的CeO_2-WO_3/ZrO_2-TiO_2整体式催化剂。由NH_3-TPD、O_2-TPD等方法研究了TiO_2的添加对NH_3选择性催化还原NO_x性能的影响。结果显示TiO_2含量为10 wt.%时催化剂拥有最佳活性:30,000 h~(-1)空速下,NO_x完全转化温度(T_(90))降低80℃,T_(90)窗口为257-466℃。催化活性的提升可归因于TiO_2的添加显著改善了催化剂的氧化还原性能和强酸量。  相似文献   

12.
高效析氢催化剂的制备仍是目前亟待解决的重要课题.本研究采用液相浸渍原位还原法制备了Ni(OH)2/Ni/g-C3N4复合催化剂,并与碳纸(CP)组合作为微生物电解电池(MEC)的阴极.采用SEM、TEM、XRD、XPS和电化学分析等技术对所制备的催化剂样品的结构性质和析氢电催化性能进行了分析研究.结果表明,Ni(OH)...  相似文献   

13.
Designing providential catalyst is the key to drive the electrochemical nitrogen reduction reactions(NRR),which is referring to multiple intermediates and products. By means of density functional theory(DFT)calculations, we studied heteronuclear bi-atom electrocatalyst(HBEC) for NRR. Our results revealed that compared to homonuclear bi-atom electrocatalyst(Fe_2@C_2N, V_2@C_2N), Fe, V-co-doped C_2N(Fe V@C_2N)had a smaller limiting potential of-0.17 V and could accelerate N_2-to-NH_3 conversion through the enzymatic pathway of NRR. Importantly, N–N bond length monotonically increases with increasing the Bader charges of adsorbed N_2 molecule but decreases with increasing the Bader charge difference of two adsorbed N atoms. Additionally, the Fe V@C_2N could suppress the production of H_2 by the preferential adsorption and reduction of N_2 molecule. Thus, the as-designed HBEC may have the outstanding electrochemical NRR performance. This work opens a new perspective for NRR by HBECs under mild conditions.  相似文献   

14.
采用研磨-煅烧技术制备不同g-C_3N_4含量的g-C_3N_4/TiO_2复合粉末催化剂,以模拟太阳光光催化降解气相间二甲苯实验评价催化剂活性.结果表明:当g-C_3N_4含量为60%时,g-C_3N_4/TiO_2-60的降解效果最佳.以此为代表,采用溶胶-凝胶-浸渍-提拉方法 ,制备光纤负载g-C_3N_4/TiO_2薄膜光催化材料,应用于气相间二甲苯的降解.通过X射线粉末衍射(XRD)、紫外可见漫反射(UV-Vis/DRS)及高分辨透射电镜(TEM)对催化剂进行表征.采用光电化学实验、自由基捕获实验探究其光催化机理.结果表明:模拟太阳光光照120min后,光纤负载g-C_3N_4/TiO_2-60薄膜光催化材料对气相间二甲苯的降解率为94%,经过3次循环使用后降解活性无明显变化.光在光纤中的有效传播、光生电子和空穴的快速产生、迁移以及反应体系中形成的·O2-,·OH和hVB+3种活性物种是光纤负载薄膜催化剂实现高效降解气相间二甲苯的原因.  相似文献   

15.
利用太阳能光催化还原CO_2和H_2O到燃料和化学品是一条极具吸引力但又充满挑战性的转化途径.迄今为止,只有非常有限的光催化剂已经被报道可以在可见光照射下光催化还原CO_2.局部表面等离子体共振(LSPR)现象可以被用作一种有效的开发可见光催化剂的策略.贵金属Au,Ag,Pt等的LSPR现象已经被较为广泛的研究,并应用于光催化、光热、气敏等多种领域.而低价态金属自掺杂的金属氧化物,如MoO_(3-x)和WO_(3-x),也被证明具有LSPR现象,可用于开发更加廉价的可见光催化剂.本文通过简单的溶剂热法成功合成了低价态Mo自掺杂的MoO_(3-x)纳米片催化剂,并在合成过程中原位加入TiO_2纳米颗粒(TiO_2-NP)和TiO_2纳米棒(TiO_2-NT),构建了MoO_(3-x)-TiO_2纳米复合物.电镜表征显示,MoO_(3-x)-TiO_2-NT纳米复合物中,MoO_(3-x)纳米片和TiO_2纳米管的结合更为紧密.UV-vis光谱显示,TiO_2的复合不仅可以增强MoO_(3-x)可见区的吸收强度,同时吸收峰的位置也发生了蓝移.XPS表征显示,TiO_2复合后,MoO_(3-x)中Mo~(5+)的比例明显增加,从而提高了MoO_(3-x)中自由电子的浓度,进而增强了LSPR现象和LSPR吸光能力,且TiO_2纳米管相对TiO_2纳米颗粒具有更好的促进效果.MoO_(3-x)纳米片具有在可见光照射下光催化还原CO_2的性能,CO的生成速率为2.8μmol g~(?1) h~(?1).复合TiO_2纳米颗粒后,MoO_(3-x)-TiO_2-NP纳米复合物上,CO的生成速率提高到6.8μmol g~(?1) h~(?1).当复合TiO_2纳米管时,光催化性能显著提高,在Mo O_(3-x)-TiO_2-NT纳米复合物上,CO的生成速率可达12μmol g~(?1) h~(?1),约为MoO_(3-x)纳米片的四倍,此外还可观测到CH_4的生成.当我们将反应气氛由CO_2替换成N_2后,CO和CH_4的生成量几乎为零,证明CO和CH_4的生成主要来自CO_2的光催化还原.此外,我们还考察了MoO_(3-x)-TiO_2-NT纳米复合物光催化还原CO_2的催化性能稳定性,以12 h反应时间为一个循环,经3个循环反应后,催化剂的活性基本保持不变,证明该催化剂具有较好的稳定性.综上,我们通过MoO_(3-x)纳米片和TiO_2复合的策略,增强了MoO_(3-x)纳米片的LSPR效应,提升了催化剂对可见光的吸收能力,进而提高了MoO_(3-x)-TiO_2-NT纳米复合物光催化还原CO_2的性能.MoO_(3-x)-TiO_2-NT纳米复合物是一种具有发展潜力的光催化还原CO_2的可见光催化剂,且该纳米复合物调变LSPR效应的策略还有望用于增强其他LSPR光催化材料的光催化性能.  相似文献   

16.
采用自发沉积法、共沉淀法及浸渍法制备MnO_x/TiO_2催化剂,通过XRD、TEM、N2吸附-脱附、XPS、H_2-TPR、NH_3-TPD等一系列表征手段研究MnO_x/TiO_2催化剂的结构与性质,并考察MnO_x/TiO_2催化剂低温NH_3-SCR性能。结果表明,自发沉积法制备的MnO_x/Ti O2(s)催化剂具有完全非晶态结构,Mn和Ti之间存在强相互作用,较共沉淀法制备的MnO_x/TiO_2(c)及浸渍法制备的MnO_x/Ti O2(i)表现出更强的氧化还原能力。MnO_x/TiO_2(s)具有较高的比表面积、较多的表面酸量,有利于NH_3的吸附与活化。且表面高浓度的Mn4+离子及吸附氧,有利于将NO氧化为NO2,促进发生"fast-SCR"反应,进而使其表现出优异的低温脱硝性能。MnO_x/TiO_2(s)催化剂在150℃时NO的转化率高达92.8%,在150-350℃NO的转化率保持在90%以上,此外其还具备较强的抗H_2O和SO_2毒化能力。  相似文献   

17.
NOx是大气污染物的重要组成部分,能够造成酸雨、光化学烟雾和臭氧层破坏等一系列环境问题,严重危害人类健康.选择性催化还原(SCR)是控制NOx排放的主要技术,当前工业上普遍采用的是钒钛催化剂,然而该催化剂活性温度窗口较窄(300-400 ℃),N_2选择性较低,而且钒物种本身有毒.因此开发新型SCR催化剂成为研究热点.Fe/TiO_2催化剂具有稳定的化学性质,环境污染少且价格低廉,近年来受到广泛关注.为了提高Fe/TiO_2催化活性,人们采用了各种不同的制备方法.本文以F127作为结构导向剂,结合溶胶-凝胶法原位合成了具有介孔结构、工作温度在150-300 ℃的Fe/TiO_2脱硝催化剂,并与普通浸渍法和共沉淀法制备的催化剂进行了对比.利用N_2吸附脱附、紫外-可见光谱、X射线电子能谱、NH_3程序升温脱附和原位红外光谱等技术研究了制备方法对Fe/TiO_2催化剂物理结构及脱硝性能的影响.结果表明,相较于浸渍法和共沉淀法,模板法制备的催化剂具有较高的脱硝效率和抗H_2O和SO_2性能.作为结构导向剂,F127能够诱导催化剂形成均匀的介孔结构,有利于提高催化剂比表面积,促进反应物分子的扩散和转移,从而提高催化剂脱硝效率.进一步研究发现,模板法能够明显促进活性组分Fe物种的分散和NH_3吸附,载体与活性组分具有较强的相互作用,因而有利于催化剂产生较多的活性位.结合XPS结果,较多的活性位点有利于表面吸附氧(O_α)在催化剂表面的吸附.Oα有利于NO到NO_2的转化,从而促进快速SCR反应:NO+NO_2+2NH_3→2N_2+3H_2O.通过原位红外机理分析证明,吸附在模板法制备的催化剂表面的NO物种具有较强的稳定性,当温度超过200 ℃时,仍然保持一定的吸附强度;吸附NH_3红外结果表明,Lewis酸性位比Br?nsted酸性位具有更强的稳定性,当温度超过150℃仍然具有较强的Lewis酸吸附.催化剂表面稳定的NO物种和Lewis酸位上强的NH_3吸附是催化剂催化活性增加的重要原因.  相似文献   

18.
以钛酸四丁酯为原料,采用溶剂蒸发自组装法(EISA)在不同焙烧温度下制备不同比表面积及结构的介孔TiO_2载体.利用亚当斯熔融法在介孔TiO_2载体表面负载IrO_2纳米颗粒,对IrO_2/TiO_2的结构和性能进行了表征,并在质子交换膜(PEM)单电池中对IrO_2/TiO_2催化剂进行了电化学表征.结果表明,随着焙烧温度的升高,TiO_2载体比表面积降低,孔径增大,孔容减小,组织结构有利于向金红石相转变.TiO_2载体的存在明显改善了IrO_2颗粒的分布,IrO_2晶粒尺寸减小.在IrO_2负载量(质量分数)为40%的情况下,IrO_2颗粒易在低比表面积的载体表面形成连续的IrO_2导电催化层,载体比表面积越低其催化活性越高.在1A/cm~2的电流密度下,IrO_2,40%IrO_2/TiO_2-2和40%IrO_2/TiO_2-3催化剂的极化电势分别为2.028,2.426和2.064 V.介孔TiO_2载体的表面结构及导电性极大影响了催化剂的电化学活性.  相似文献   

19.
纳米TiO_2膜修饰电极异相电催化还原马来酸   总被引:22,自引:1,他引:22  
通过电化学合成前驱体和溶胶-凝胶法在Ti表面修饰一层纳米TiO_2膜,SEM, XRD测试表明晶型为锐钛矿型,晶粒平均尺寸为25 nm。采用循环伏安法、循环方波 伏安法和电解合成法研究了纳米TiO_2膜电极在硫酸介质中的氧化还原行为以及对 马来酸(maleic acid)还原的电催化活性。结果表明,纳米TiO_2膜电极在阴极扫 描时有两对可逆氧化还原峰,可逆半波电位E_(1/2)~r分别为-0.53 V和-0.92 V( sv. SCE,扫描速度0.05 V·s~(-1)),对应于TiO_2/Ti_2O_3和TiO_2/Ti(OH)_3两 个氧化还原电对的可逆电极过程。其中TiO_2/Ti_2O_3电对对马来酸具有异相电催 化还原活性,纳米TiO_2膜中的Ti~(IV)/Ti~(III)氧化还原电对作为媒质间接电还 原马来酸为丁二酸(butane diacid),反应机理为电化学偶联随后化学催化反应 (EC')机理。  相似文献   

20.
MnO_x/TiO_2催化剂由于具有优异的低温脱硝性能,已成为SCR催化剂的研究热点之一.我们通过浸渍法制备了一系列不同Mn负载量的nMnO_x/TiO_2(n=2.5%, 5%, 10%, 15%)(质量分数)催化剂,考察Mn负载量对催化剂脱硝性能的影响.利用N_2物理吸附, X-Ray Diffraction (XRD), Scanning Electron Microscope(SEM),Temperature Programmed Reduction with H_2(H_2-TPR),Temperature Programmed Desorption with NH_3(NH_3-TPD)和X-Ray Photoelectron Spectroscopy (XPS)对其结构进行表征.结果表明,催化剂的脱硝性能随着Mn负载量(2.5%~15%)(质量分数)的变化呈现"火山型"曲线,当Mn负载量为10%(质量分数)时,催化剂的脱硝性能最佳. H_2-TPR和XPS结果表明nMnO_x/TiO_2催化剂上表面氧比例和表面Mn~(4+)浓度均随着Mn负载量的增大,先增大后减小,具体顺序为10MnO_x/TiO_(2 ) 15MnO_x/TiO_(2 )5MnO_x/TiO_(2 ) 2.5MnO_x/TiO_2,与脱硝性能顺序完全一致.进一步关联表面氧的比例与T_(50)发现,催化剂的表面氧的比例与T_(50)呈线性关系,即表面氧比例越高, T_(50)越小,脱硝活性越高. NH_3-TPD结果表明,弱酸酸量的增加有助于低温脱硝活性的提高.这些结果揭示了Mn负载量影响脱硝性能的作用规律,为今后开发高效的锰基低温脱硝催化剂提供了技术支撑.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号