首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
李仁贵 《催化学报》2018,39(7):1180-1188
氨不仅是一种广泛使用的化工原料,还可用作重要的能源载体.哈伯法合成氨被认为是20世纪最伟大的发明之一,为人类社会的发展做出了巨大贡献.同时,氨合成过程每年需要消耗世界总能源的1%–2%.因此,开发绿色清洁的氨合成方法一直是世界范围内工业界和学术界关注的热点.随着人工光合成太阳燃料研究的蓬勃发展,利用太阳能光催化的方式实现在温和条件下合成氨吸引了越来越多研究者的兴趣,因为这是一条最为理想的能源利用途径,即直接利用太阳能将氮气和水转化为氨.近期,该研究领域涌现了一系列有代表性的研究工作,报道了利用半导体光催化剂实现太阳能到氨的转化,虽然整体效率仍很低,但是已经证明了利用太阳能直接将氮气转化为氨的可能性.光催化合成氨过程中,最具挑战的是氮气分子在半导体光催化剂表面的吸附和活化.研究表明,通过在半导体光催化剂表面引入空位或者缺陷可有效地增加氮气的吸附,且很可能成为氮气分子活化并参与反应的活性中心.此外,借鉴自然界豆类植物固氮酶的独特结构,利用其对于氮气分子高效活化的独特优势,构建自然-人工杂化体系也是提升氮气吸附与活化的有效策略之一.本综述将从合成氨过程中氮气的吸附与活化问题入手,分别从缺陷与空位调控和固氮酶两个方面的策略考虑,结合几个典型的光催化剂体系(如卤氧化铋,二氧化钛及水滑石等)作为示例,介绍空位调控与模拟固氮酶策略对太阳能光催化固氮的影响并分析其可能的机理.虽然人工光合成固氮研究取得了一些进展,但是目前效率太低,亟需从基础科学问题的认识和理解上有新的突破,如氮气分子的吸附与活化微观过程、空位可控调变策略、新型光催化剂的开发与表界面修饰、氨氧化逆反应的抑制策略及精确的理论模拟指导人工光合成固氮体系的构建等.最后,对人工光合成固氮研究方向面临的挑战和未来的发展方向进行了总结与展望.  相似文献   

2.
采用共沉淀法(CP)、改性沉淀沉积法(MDP)、浸渍法(IP)制备了Ag-Ru/CeO2催化剂,并运用N2物理吸附、X射线衍射(XRD)、H2程序升温还原(H2-TPR)、N2程序升温脱附(N2-TPD)等技术对其进行了表征,考察了个同制备方法对Ag-Ru/CeO2催化剂氨合成性能的影响.结果表明:不同方法制备的催化剂,银助剂对载体的还原性能和氮气的解离吸附性能的影响存在明显的差别,从而影响了催化剂的氨合成活性,其中采用浸渍法制备的催化剂氮气解离吸附最强,载体最易于还原,因此催化剂低温氨合成活性最高,在10 MPa,10000 h-1,400℃反应条件下,出口氨浓度达到9.4%.  相似文献   

3.
氨合成催化剂100年:实践、启迪和挑战   总被引:2,自引:0,他引:2  
刘化章 《催化学报》2014,35(10):1619-1640
Haber-Bosch发明的氨合成催化剂创立已经100周年. 介绍了氨合成催化剂在理论和实践方面的发展、成就及其启迪,展望了氨合成催化剂的未来和面临的新挑战. 催化合成氨技术在20世纪化学工业的发展中起着核心的作用. 一个世纪以来,氨合成催化剂经历了Fe3O4基熔铁催化剂、Fe1-xO基熔铁催化剂、Ru基催化剂等发展阶段,以及钴钼双金属氮化物催化剂的发现. 实践表明,氨合成催化剂是多相催化领域中许多基础研究的起点和试金石,没有别的反应象氨合成反应一样,能够把理论、模型催化剂和实验连接起来. 催化合成氨反应仍然是多相催化理论研究的一个理想的模型体系. 理解该反应机理并转换成完美技术成为催化研究领域发展的基本标准. 这个永不结束的故事仍然没有结束. 除了关于反应的基本步骤、真实结构、亚氮化物这些问题之外,催化合成氨在理论上一个新的挑战是关于在室温和常压下氨合成的预测,包括电催化合成氨、光催化合成氨和化学模拟生物固氮以及包括氮分子在内的催化化学研究中几种最稳定的小分子的活化方法等.  相似文献   

4.
氨是氮肥等工业的主要原料,因此氨产量居各种化工产品的首位.目前,90%以上的氨通过传统Haber-Bosch法制得,但该反应需要在高温高压下进行,消耗大量能源,同时排放大量CO2.基于此,科研人员致力于寻求一种绿色、高效的合成氨替代方法.其中,利用太阳能,通过光电化学氮还原合成氨是最有潜力和竞争力的方法之一,该方法也为有效利用太阳能提供了新途径.目前,虽然光电化学氮还原研究取得了一定进展,但是氨产率和氮转换效率低限制了其经济可行性.这主要归因于四个方面:(1)牢固的氮氮三键使得氮气难以活化;(2)复杂的多步和多电子反应使得动力学迟缓;(3)析氢竞争反应降低了太阳能-氨的转换效率;(4)氮气在水溶液中的溶解度低导致吸附在光电阴极表面的氮气较少.为解决上述问题,本文通过溅射法在B掺杂的p型(100)晶向硅片上共沉积Au,Co和Pd,然后在600℃下和空气中快速退火,制得由助催化剂/保护层/光吸收层组成的层级硅基光电阴极,并用于氮还原合成氨.成分和结构表征结果表明,层级硅基光电阴极由p型硅光吸收层、二氧化硅保护薄层和AuCoPd合金纳米颗粒助催化剂组成,该电极可表示为A...  相似文献   

5.
SrCe0.95Y0.05O3-δ是一种高温质子导体,本研究采用溶胶—凝胶法合成了 SrCe0.95Y0.05O3-δ纳米粉体,并以该粉体烧制得固体复合氧化物电解质陶瓷,测 定了其在中温区间(400-600℃)的电导率,结果表明不同气氛对其电导率有很大影 响.用该陶瓷在固态质子传导电他中常压下以氮气和氢气为原料合成了氨,并研究 了影响氨合成的关键因素,确定了合适的工作温度,在常压下480℃时氨的产率可 达10^-9mol/(s.cm^-2)以上.  相似文献   

6.
氨(NH3)广泛应用于化肥等工业化学品的生产中,年消耗量巨大.同时,氨具有高氢含量和高能量密度,可作为清洁能源载体和燃料,具有广阔的应用前景.因此,合成氨工业在国民经济和社会发展中起着重要作用.目前,合成氨的主要采用传统的Haber-Bosch工艺,但其严苛的操作条件导致了大量能源消耗和二氧化碳排放,进一步加剧了全球变暖.在全球能源危机和环境问题的背景下,开发可再生能源驱动的绿色高效氨合成技术受到广泛关注.其中,以光催化和电催化为动力的氮还原反应(NRR)被认为是最有前途的方法之一.然而,由于N2吸附动力学缓慢, N≡N键分裂困难且析氢反应严重,目前电催化和光催化氮还原的产率和法拉第效率都较低.近年来,得益于各种催化剂和电解液的发展, NRR产率和法拉第效率不断提升,但也逐渐暴露出一些严重的问题——测试结果呈现高波动性和低重复性,甚至假阳性,这使得人们对NRR的发展前景产生了怀疑.由于NRR反应的产量极低(通常为纳/微摩尔水平),所以反应过程中的微量污染都可能严重影响NH3的定量结果,从而导致对NRR反应体系性能的误判.因此,如何保证得到的产物NH3完全来自于氮气的还原是一个难题.本文...  相似文献   

7.
氧化锰晶体作为催化材料调控氨氧化反应产物选择性   总被引:1,自引:0,他引:1  
王海  罗青松  王亮  惠宇  秦玉才  宋丽娟  肖丰收 《催化学报》2021,42(12):2164-2172
有机腈类化合物作为一类重要的化工原料,被广泛应用于医药/农药制造、精细化学品合成和高性能纤维/橡胶生产中.传统合成有机腈类化合物一般使用剧毒的氰化物作为腈化试剂,这类氰化物在危害人体健康的同时,也会严重污染生态环境.针对无氰化物的腈化过程,发展了很多新的反应路线,其中,采用氨气作为氮源的直接氨氧化引起了广泛关注.在该反应中,高温气固相氨氧化反应容易发生过氧化等副反应.与之相比,液相体系中的氨氧化过程反应条件则相对温和,可以有效抑制过氧化.但是,在液相反应中,腈类产物很容易被水合成酰胺类化合物,从而导致该反应的产物选择性大幅降低.本文研究发现,通过改变氧化锰晶体结构可以有效地调控醇类分子氨氧化反应中腈和酰胺产物的选择性.MnO2(包括α,β,γ和δ相)催化的氨氧化过程中,主要得到了酰胺(选择性>99.0%),而在相同反应条件下,α-Mn2O3却可以高选择性地催化醇氨氧化到腈类产物(选择性>99.0%),在该体系中,即使额外增加反应体系中水和催化剂的用量,腈类产物依然不会转化为酰胺产物.动力学研究结果表明,α-Mn2O3催化腈水合到酰胺的反应速率几乎为零,这说明该类催化剂可以有效抑制腈水合反应.原位红外光谱结果表明,α-Mn2O3表面无法有效活化水分子,并且对腈类分子的吸附较弱,这些因素都导致了腈水合反应难以进行,从而可以高选择性地形成腈类化合物.与之相反,MnO2催化材料则可以高效地活化水分子,并且对腈类分子吸附较强,从而有效促进了水合反应并获得了酰胺产物.综上,通过调控氧化锰的晶体类型就可以简单、有效地改变氨氧化反应中的产物选择性.即使在苛刻的反应条件下,例如较大量的水存在下,α-Mn2O3催化的反应体系中依然可以高选择性地获得腈类化合物.本文为高效调控氨氧化反应的产物选择性提供了一个可靠方案.  相似文献   

8.
α-羰基重氮化合物易于制备,在光照和加热等条件下脱去氮气形成高反应活性的卡宾中间体,通过卡宾介导的各类反应可以高效构筑多种化学键,其中N—H插入反应可以实现高效构筑C—N键,在有机合成和药物合成领域得到广泛应用.总结了在过渡金属、有机小分子、生物大分子催化及光和热条件下实现α-羰基重氮化合物对N—H键的插入反应的研究进展,主要介绍了反应机理和合成应用,并对发展前景进行展望.  相似文献   

9.
蔡欣懿  张树永 《化学教育》2022,43(8):118-121
根据当前普遍被接受的氨合成和氨分解机理,明确了氨合成及分解反应的速度控制步骤,确定了氨合成和氨分解反应的动力学方程,进而导出合成氨反应的动力学平衡常数表达式,与热力学平衡常数进行了比较,明确了2者之间的关系。有助于理解合成氨热力学平衡常数与反应速率的关系。  相似文献   

10.
氮气分子具有高的化学惰性,氮气的活化与转化充满挑战.含氮有机物在国民经济发展中具有广泛且重要的价值,实现温和条件下由氮气直接转化为含氮有机物在科学和经济上均具有重要意义.目前对氮气的活化与转化的研究主要集中在主族与过渡金属配合物,稀土和锕系元素由于具有特殊的电子结构,在氮气的活化与转化领域展现出了区别于主族和过渡金属的特殊反应活性.我国作为稀土和钍资源大国,开展稀土及锕系元素的固氮转化研究具有重要的战略意义.本综述归纳和总结了过去五年内稀土和锕系金属氮气配合物的合成,以及由稀土和锕系配合物促进的以氮气为原料生成含氮有机物的研究.  相似文献   

11.
The electrocatalysis of nitrate reduction reaction(NRR) has been considered to be a promising nitrate removal technology.Developing a highly effective iron-based electrocatalyst is an essential challenge for NRR.Herein,boron-iron nanochains(B-Fe NCs) as efficient NRR catalysts were prepared via a facile lowcost and scalable method.The Fe/B ratio of the B-Fe NCs-x can be elaborately adjusted to optimize the NRR catalytic performance.Due to the electron transfer from boron to metal,the metal-metal bonds are weakened and the electron density near the metal atom centers are rearranged,which are favor of the conversion from NO_3~-into N_2.Moreover,the well-crosslinked chain-like architectures benefit the mass/electron transport to boost the exposure of abundant catalytic active sites.Laboratory experiments demonstrated that the optimized B-Fe NCs catalyst exhibits superior intrinsic electrocatalytic NRR activity of high nitrate conversion(~80%),ultrahigh nitrogen selectivity(~99%) and excellent long-term reactivity in the mixed electrolyte system(0.02 mol/L NaCl and 0.02 mol/L Na_2 SO_4 mixed electrolyte),and the electrocatalytic activity of the material shows poor performance at low chloride ion concentration(Nitrate conversion of ~61 % and nitrogen selectivity of ~57% in 0.005 mol/L NaCl and 0.035 mol/L Na_2 SO_4 mixed electrolyte).This study provides a broad application prospect for further exploring the highefficiency and low-cost iron-based functional nanostructures for electrocatalytic nitrate reduction.  相似文献   

12.
NH3 plays an important role in modern society as an essential building block in the manufacture of fertilizers, aqueous ammonia, plastics, explosives, and dyes. Additionally, it is regarded as a green alternative fuel, owing to its carbon-free nature, large hydrogen capacity, high energy density, and easy transportation. The Haber-Bosch process plays a dominant role in global NH3 synthesis; however, it involves high pressure and temperature and employs N2 and H2 as feeding gases, thus suffering from high energy consumption and substantial CO2 emission. As a promising alternative to the Haber-Bosch process, electrochemical N2 reduction enables sustainable and environmentally benign NH3 synthesis under ambient conditions. Moreover, its applied potential is compatible with intermittent solar, wind, and other renewable energies. However, efficient electrocatalysts are required to drive N2-to-NH3 conversion because of the extremely inert N≡N bond. To date, significant efforts have been made to explore high-performance catalysts with high efficiency and selectivity. Generally, noble-metal catalysts exhibit efficient performance for the NRR, but their scarcity and high cost limit their large-scale application. Therefore, considerable attention has been focused on earth-abundant transition-metal (TM) catalysts that can use empty or unoccupied orbitals to accept the lone-pair electrons of N2, while donating the abundant d-orbital electrons to the antibonding orbitals of N2. However, these catalysts may release metal ions, leading to environmental pollution. Most of these TM electrocatalysts may also favor the formation of TM—H bonds, facilitating the hydrogen evolution reaction (HER) during the electrocatalytic reaction. Recent years have seen a surge in the exploration of metal-free catalysts (MFCs). MFCs mainly include carbon-based catalysts (CBCs) and some boron-based and phosphorus-based catalysts. Generally, CBCs exhibit a porous structure and high surface area, which are favorable for exposing more active sites and providing rich accessible channels for mass/electron transfer. Moreover, the Lewis acid sites of most metal-free compounds could accept the lone-pair electron of N2 and adsorb N2 molecules by forming nonmetal—N bonds, further widening their potential for electrocatalytic NRR. Compared with metal-based catalysts, the occupied orbitals of metal-free catalysts can only form covalent bonds or conjugated π bonds, hindering electron donation from the electrocatalyst to N2 and molecular activation. In this review, we summarize the recent progress in the design and development of metal-free electrocatalysts (MFCs) for the ambient NRR, including carbon-based catalysts, boron-based catalysts, and phosphorus-based catalysts. In particular, heteroatom doping (N, O, S, B, P, F, and co-dopants), organic polymers, carbon nitride, and defect engineering are highlighted. We also discuss strategies to boost NRR performance and provide an outlook on the development perspectives of MFCs.  相似文献   

13.
《中国化学快报》2022,33(10):4623-4627
Electrocatalytic nitrogen reduction reaction (NRR) is an environmentally friendly method for sustainable ammonia synthesis under ambient conditions. Searching for efficient NRR electrocatalysts with high activity and selectivity is currently urgent but remains great challenge. Herein, we systematically investigate the NRR catalytic activities of single and double transition metal atoms (TM = Fe, Co, Ni and Mo) anchored on g-C6N6 monolayers by performing first-principles calculation. Based on the stability, activity, and selectivity analysis, Mo2@g-C6N6 monolayer is screened out as the most promising candidate for NRR. Further exploration of the reaction mechanism demonstrates that the Mo dimer anchored on g-C6N6 can sufficiently activate and efficiently reduce the inert nitrogen molecule to ammonia through a preferred distal pathway with a particularly low limiting potential of -0.06 V. In addition, we find that Mo2@g-C6N6 has excellent NRR selectivity over the competing hydrogen evolution reaction, with the Faradaic efficiency being 100%. Our work not only predicts a kind of ideal NRR electrocatalyst but also encouraging more experimental and theoretical efforts to develop novel double-atom catalysts (DACs) for NRR.  相似文献   

14.
Developing the low-cost and efficient single-atom catalysts (SACs) for nitrogen reduction reaction (NRR) is of great importance while remains as a great challenge. The catalytic activity, selectivity and durability are all fundamentally related to the elaborate coordination environment of SACs. Using first-principles calculations, we investigated the SACs with single transition metal (TM) atom supported on defective boron carbide nitride nanotubes (BCNTs) as NRR electrocatalysts. Our results suggest that boron-vacancy defects on BCNTs can strongly immobilize TM atoms with large enough binding energy and high thermal/structural stability. Importantly, the synergistic effect of boron nitride (BN) and carbon domains comes up with the modifications of the charge polarization of single-TM-atom active site and the electronic properties of material, which has been proven to be the essential key to promote N2 adsorption, activation, and reduction. Specifically, six SACs (namely V, Mn, Fe, Mo, Ru, and W atoms embedded into defective BCNTs) can be used as promising candidates for NRR electrocatalysts as their NRR activity is higher than the state-of-the art Ru(0001) catalyst. In particular, single Mo atom supported on defective BCNTs with large tube diameter possesses the highest NRR activity while suppressing the competitive hydrogen evolution reaction, with a low limiting potential of −0.62 V via associative distal path. This work suggests new opportunities for driving NH3 production by carbon-based single-atom electrocatalysts under ambient conditions.  相似文献   

15.
《中国化学快报》2021,32(10):3137-3142
Ammonia (NH3) is considered an attractive candidate as a clean, highly efficient energy carrier. The electrocatalytic nitrogen reduction reaction (NRR) can reduce energy input and carbon footprint; therefore, rational design of effective electrocatalysts is essential for achieving high-efficiency electrocatalytic NH3 synthesis. Herein, we report that the enzymatic mechanism is the more favourable pathway for NRR, due to lower limiting potential (−0.44 V), lower free energy (only 0.02 eV) of the first hydrogenation step (*N–N to *NH–N), and more electron transfer from Fe2B2 to the reaction species. In addition, both vacancies and dopants can be helpful in reducing the reaction energy barrier of the potential-determining step. Therefore, we have demonstrated that Fe2B2 is a potential new candidate for effective NRR and highlighted its potential for applications in electrocatalytic NH3 synthesis.  相似文献   

16.
Electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions provides an intriguing picture for the conversion of N2 into NH3. However, electrocatalytic NRR mainly relies on metal‐based catalysts, and it remains a grand challenge in enabling effective N2 activation on metal‐free catalysts. Here we report a defect engineering strategy to realize effective NRR performance (NH3 yield: 8.09 μg h?1 mg?1cat., Faradaic efficiency: 11.59 %) on metal‐free polymeric carbon nitride (PCN) catalyst. Illustrated by density functional theory calculations, dinitrogen molecule can be chemisorbed on as‐engineered nitrogen vacancies of PCN through constructing a dinuclear end‐on bound structure for spatial electron transfer. Furthermore, the N?N bond length of adsorbed N2 increases dramatically, which corresponds to “strong activation” system to reduce N2 into NH3. This work also highlights the significance of defect engineering for improving electrocatalysts with weak N2 adsorption and activation ability.  相似文献   

17.
Cobalt oxide nanoparticles (NPs) supported on porous carbon (CoOx@CN) were fabricated by one-pot method and the hybrids could efficiently and selectively hydrogenate phenol to cyclohexanol with a high yield of 98%.  相似文献   

18.
氨是一种重要的化工原料和能量载体,“哈伯反应”是工业上合成氨最主要的方法,但是该方法存在着能耗高,大量排放温室气体CO2以及转化率低等问题。近年来,常温常压下基于多相催化剂的电化学还原N2反应(NRR)来制备氨因其原料(N2 + H2O)易得,不依赖传统化石能源以及条件温和等原因而表现出巨大的应用潜能,并受到了科学家的广泛关注。然而目前NRR仍存在着如催化剂以贵金属材料为主,催化效率低和催化机理未明确等问题亟待解决。本综述主要总结了电催化NRR的最新研究成果,首先介绍了电催化NRR热力学和催化机理,接着重点列举了基于非贵金属催化剂的研究进展,包括过渡金属氧化物、氮化物、硫化物、非金属催化剂及单原子催化剂等,然后讨论了几种NRR电催化剂的改性方法,以及常见的产物氨的定性定量方法,最后,就目前该研究方向中仍待解决的问题进行了总结,并对下一步的研究进行了展望。  相似文献   

19.
The nitrogen reduction reaction (NRR) has become an ideal alternative to the Haber-Bosch process, as NRR possesses, among others, the advantage of operating under ambient conditions and saving energy consumption. The key to efficient NRR is to find a suitable electrocatalyst, which helps to break the strong N≡N bond and improves the reaction selectivity. Molybdenum disulfide (MoS2) as an emerging layered two-dimensional material has attracted a mass of attention in various fields. In this minireview, we summarize the optimization strategies of MoS2-based catalysts which have been developed to improve the weak NRR activity of primitive MoS2. Some theoretical predictions have also been summarized, which can provide direction for optimizing NRR activity of future MoS2-based materials. Finally, an outlook about the optimization of MoS2-based catalysts used in electrochemical N2 fixation are given.  相似文献   

20.
In this paper,we synthesized cathode catalysts(PANI-PPYR,Fe/PANI-PPYR,Co/PANI-PPYR and Fe-Co/PANI-PPYR)with high performance oxygen reduction by using a simple heat treatment process.These catalysts were fabricated by directly calcining the Fe and/or Co doped polyaniline(PANI)-polypyrrole(PPYR)composites.Their electrocatalytic activity for ORR both in acidic and in alkaline media was investigated by voltammetric techniques.Among the prepared catalysts,Co/PANI-PPYR presents the most positive ORR onset potential of 0.62 V(vs.SCE)in 0.5 mol/L H2SO4 solution or?0.09 V(vs.SCE)in 1 mol/L NaOH solution.In addition,the Co/PANI-PPYR catalyst shows the largest limiting-diffusion current density for ORR,which is 4.3 mA/cm2@0.2 V(vs.SCE)in acidic and 2.3 mA/cm2@?0.3 V(vs.SCE)in alkaline media.In acidic media,a four-electron reaction of ORR on the Co/PANI-PPYR and Fe/PANI-PPYR catalysts is more dominant than a two-electron reaction.In alkaline media,however,a four-electron and a two-electron mechanisms are co-present for the ORR on all the prepared catalysts.Co/PANI-PPYR catalyst also presents good electrocatalytic activity stability for ORR both in acidic and in alkaline media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号