共查询到20条相似文献,搜索用时 9 毫秒
1.
硫化镉锌(Zn0.5Cd0.5S)纳米棒因其制备方法简单以及具有良好的光催化活性等优点,在光催化领域得到广泛的研究和应用.单一Zn0.5Cd0.5S存在光生电子与空穴易复合以及光腐蚀等问题,采用助催化剂修饰将有助于电荷分离与迁移,从而提高其光催化性能.本文将PtPd合金作为助催化剂修饰Zn0.5Cd0.5S纳米棒光催化材料,以提高可见光照射下的产氢速率,并对合金助催化剂提高催化活性的机理进行了深入研究.通过简单水热法合成Zn0.5Cd0.5S,采用化学还原沉积法制备PtPd/Zn0.5Cd0.5S复合光催化材料.XRD结果表明,成功合成了Zn0.5Cd0.5S催化剂.TEM结果表明,Zn0.5Cd0.5S呈纳米棒状,测量得到PtPd合金的(111)晶面条纹间距为0.23 nm,说明合金成功负载到硫化镉锌上.XPS结果表明,PtPd/Zn0.5Cd0.5S复合样品中Pt和Pd元素的峰值较Pt/Zn0.5Cd0.5S和Pd/Zn0.5Cd0.5S均发生了偏移,Pt和Pd元素化学结合环境发生改变,进一步证实合成了PtPd合金.光催化产氢实验结果表明,当Zn0.5Cd0.5S负载PtPd合金以后,光催化产氢速率大幅提升,其中负载量为1.0 wt%的PtPd/Zn0.5Cd0.5S复合光催化材料的产氢速率最快,达到9.689 mmol·g-1·h-1,分别是纯Zn0.5Cd0.5S,Pt/Zn0.5Cd0.5S和Pd/Zn0.5Cd0.5S的9.5,3.6和1.7倍.为了探究PtPd合金性能优于Pt的原因,本文结合化学反应热力学(DFT理论计算)和动力学(光致发光光谱、光电流响应、电化学阻抗谱和表面光电压谱)手段进行了详细研究.结果 表明,PtPd二元贵金属合金具有与Pt相近的氢活性物种吸附能和d带中心,可以大大加速电荷转移,促进电荷分离,降低H2生成的活化能.虽然Pt在热力学上有利于光催化产氢,但从催化反应动力学结果可知,PtPd合金在动力学上更有利于产氢,这与光催化产氢结果一致,即PtPd/Zn0.5Cd0.5S复合材料催化活性高于Pt/Zn0.5Cd0.5S.综上,本文研究结果可为其他金属合金助催化剂的研究提供新思路. 相似文献
2.
《催化学报》2021,(1)
太阳光驱动的光催化分解水产氢是一种绿色制氢技术,并以氢为载体可实现太阳能向化学能的转化.目前开发高效、稳定的可见光催化剂仍是本领域的研究热点.在各类光催化材料中,Cd_(0.5)Zn_(0.5)S固溶体比Ti O_2及g-C_3N_4具有更优异的光催化产氢活性,但它一般为团聚了的纳米颗粒或纳米微球,表面积小,比表面反应迟缓,从而限制了其实际应用.通常,超薄多孔二维结构光催化剂具有高比表面积,能够为反应物分子与催化剂之间提供大量接触界面并促进传质,此外,特定晶面暴露赋予了其大量不饱和配位表面原子,使反应物分子更容易在催化剂表面吸附活化,提升表面催化反应动力学.本文首先采用乙二胺与水的混合溶液制备了无机有机杂化的硫化锌-乙二胺(记为:Zn S(en)_(0.5)).随后,分别以Zn S(en)_(0.5)为硬模板、以乙二醇为反应介质、氯化镉为镉源,通过溶剂热阳离子交换得到了无机有机杂化的Cd_(0.5)Zn_(0.5)S(en)_x中间产物.最后,将Cd_(0.5)Zn_(0.5)S(en)_x在纯水中进行水热反应脱除晶格内乙二胺分子得到了2D介孔超薄Cd_(0.5)Zn_(0.5)S纳米片.TEM测试发现,纳米片表面存在大量孔洞,其主要源于Cd_(0.5)Zn_(0.5)S(en)_x的相变过程及其晶格内乙二胺分子的逃逸导致的晶格畸变.AFM观察结果表明,最终产物Cd_(0.5)Zn_(0.5)S纳米片厚度约为1.5 nm;其比表面积可达63.5 m~2/g,几乎是相应纳米颗粒的两倍.以三乙醇胺(TEOA)为牺牲剂时,Cd_(0.5)Zn_(0.5)S纳米片的产氢速率达到19.1 mmol·h~(-1)·g~(-1),是相应纳米颗粒的两倍多.即使在纯水中,Cd_(0.5)Zn_(0.5)S纳米片产氢速率仍可达到1395μmol·h~(-1)·g~(-1),超过了目前所报道的未加修饰的光催化剂的活性.其优异的活性源于其独特的结构优势,包括载流子迁移距离的缩短、表面不饱合原子及比表面积的增大.但在纯水中其严重的光腐蚀仍然亟待克服.此外,为进一步增强其活性,通过机械复合的方法得到了Ni Co_2S_4/Cd_(0.5)Zn_(0.5)S二元复合光催化剂,其在TEOA为牺牲剂时制氢速率可达62.2 mmol·h~(-1)·g~(-1),在纯水制氢速率达到2436μmol·h~(-1)·g~(-1).电化学、UPS及EPR分析表明,Ni Co_2S_4与Cd_(0.5)Zn_(0.5)S纳米片间形成了肖特基接触,进一步促进了载流子分离能力,提高了复合物的产氢活性.以本工作为基础,还可制备其他高活性的CdZnS-基功能光催化材料用于太阳能转化或其他领域. 相似文献
3.
如何提高光催化制氢量子产率是太阳能分解水制氢研究的重点和焦点.Zn-Cd-S固溶体因具有窄的带隙宽度及合适的导带和价带位置而显示了广阔的应用前景.然而,两方面的问题限制了其规模化应用:(1)往往需负载Pt,Pd,Ru和Rh等贵金属助催化剂才能获得可观的光催化性能;(2)传统合成技术通常采用硫代乙酰胺、硫脲及硫化钠等昂贵且有毒的化学试剂作硫源.与上述硫源相比,生物小分子L-胱氨酸分子中含有-COOH、-NH_2及-SH基团,这些基团易于与金属阳离子配位,因此能够有效调控硫源释放S~(2-)的速度,硫化物的形貌、尺寸以及取向能够灵活地得到调控.另外,在强碱或强酸性介质中,L-胱氨酸具有良好的水溶性,因此材料的合成可选择在水介质中,这对光催化过程是非常关键的,有利于改善材料在光催化反应过程中的稳定性.基于此,本文以经济环保的生物小分子作硫源,制备了高效、稳定且有可见光响应的纳米硫化物光催化体系,旨在发展环境友好、条件温和、成本低廉、操作简单和易于工业化生产的绿色制备技术,.以L-胱氨酸为硫源和结构导向剂,采用水热合成技术在温和条件下制备了立方相结构的Zn-Cd-S固溶体光催化剂,采用XRD,TEM,HRTEM,XPS,UV-vis及N2吸附等手段表征了其结构和形貌.结果表明,随Zn含量增加,其带隙在2.11–3.19e V间连续可调.在可见光(λ420 nm)照射、无助催化剂和Na2S/Na_2SO_3水溶液为牺牲剂的条件下研究了其光催化制氢的性能.其中Zn_(0.9)Cd_(0.1)S具有最佳的光催化活性,其产氢速率约为4.4 mmol h~(-1)g~(-1)(无助催化剂,远高于CdS),且显示优良的稳定性及抗光腐蚀能力.通过经验公式计算得出了其能带结构示意图,结果表明,Zn _x Cd_(1-x) S固溶体的导带和价带的位置随着Zn含量的增加而向更负的导带和更正的价带移动.固溶体导带电位更负促进更有效的氢产生,电位价带更正导致电荷更容易发生转移.Zn_(0.9)Cd_(0.1)S高的光催化活性可能归因于中等的导带边缘和最合适的带隙.最后利用光电流及交流阻抗阐明了其光生电子-空穴对的分离及迁移机理.与CdS相比,Zn-Cd-S固溶体的形成促进了光生载流子在界面间的传输,抑制了其快速复合,从而大幅度改善了光催化活性及稳定性.该硫化物纳米晶的绿色制备技术期望可推广到其它硫化物可见光光催化体系. 相似文献
4.
《物理化学学报》2021,(6)
开发低成本的半导体光催化剂以实现可见光下高效、持久的光催化分解水产氢化是一个非常具有挑战性的课题。近年来, 1D Mn_xCd_(1-x)S纳米结构由于载流子扩散路径短,长径比高,具有优异的光吸收、电荷分离和H_2析出活性,而广泛地应用在光催化H_2析出应用中。然而,单一的Mn_xCd_(1-x)S光催化剂仍然存在着一些缺点,如光生电子-空穴对的快速复合和量子效率低等。为了进一步促进光生电荷载流子的分离和H_2释放动力学,采用原位溶剂热法合成了Mn_(0.2)Cd_(0.8)S纳米棒(MCSNRs)和Ti_3C_2MXene纳米片(NSs)之间的1D/2D肖特基异质结。采用各种表征方法深入地研究了金属Ti_3C_2MXene NSs在Mn_(0.2)Cd_(0.8)S纳米棒上促进光催化H_2进化的关键作用和潜在机制。通过X射线衍射(XRD)、透射电子显微镜(TEM)、高分辨透射电镜(HRTEM)、元素分布图和X射线光电子能谱(XPS)等测试手段,证实成功地构建了低成本的肖特基杂质结,并将其应用于光催化产氢反应中。此外,在Na_2SO_3和Na_2S混合牺牲剂溶液中,进行了光催化析氢反应。优化后的1D/2D肖特基异质结的最高析氢速率为15.73 mmol·g~(-1)·h~(-1),比纯MCS NRs (2.34 mmol·g~(-1)·h~(-1))高6.72倍。在420nm处获得了19.6%的表观量子效率(AQE)。稳定性测试结果表明,二元光催化剂具有良好的光催化稳性性及广阔的应用前景。更有趣的是,紫外-可见漫反射光谱、光致发光(PL)光谱、瞬态光电流响应和极化曲线谱都清楚地证实了MCS NRs和Ti_3C_2 MXene纳米片之间的有效电荷分离。线性扫描伏安法(LSV)也表明,MXene助催化剂的加入可以显著降低纯MCS NRs的过电位,证实2D Ti_3C_2 NSs可以作为电子导电桥梁,改善H_2析出动力学。总之,金属Ti_3C_2 MXene NSs和MCS NRs之间的2D/1D杂化肖特基异质结不仅可以大大改善光生电子和空穴的分离,而且可以减少H_2析出过电位,从而显著提高光催化产氢活性。希望本文的研究能为低成本肖特基异质结的构建提供新的思路,为光催化H_2生产的实际应用提供参考。 相似文献
5.
利用半导体作为催化剂,将水光催化还原为H2,为缓解全球能源危机以及环境污染问题提供了一种经济环保的途径。优化调控载流子动力学行为对提高半导体光催化分解水还原为绿色燃料-H2的活性具有十分重要的意义。目前,基于半导体异质结效应或局域表面等离激元共振的敏化过程来设计和调控半导体基异质结构体系已成为调控载流子动力学行为的一种经典策略。然而,通过精细设计异质结构,合理耦合上述敏化过程,实现载流子动力学的级联调制,从而获得高效的光催化产H2活性仍然任重道远。在本文中,我们通过原位氧化(g-C3N4的剥离和Ag2S)和还原(Ag)反应,将等离激元Ag纳米颗粒(NPs)和两种不同的半导体Ag2SNPs和g-C3N4纳米片(NSs)组装在电纺TiO2纳米纤维(NFs)中,形成了一种新型四元异质组分纳米纤维(HNFs)体系。结合时间分辨光致发光光谱,3D时域有限差分模拟以及对照实验,我们... 相似文献
6.
7.
太阳光驱动的光催化分解水产氢是利用太阳能解决当前能源危机和环境问题的理想策略.二氧化钛由于其稳定、环境友好和成本低等优点受到广泛研究,在光催化领域具有不可或缺的作用.然而,纯二氧化钛光催化剂具有光生电子-空穴复合率高、太阳能利用率低等缺点,使其在光催化产氢领域的应用受到限制.迄今为止,人们探索了多种改性策略来提高二氧化钛的光催化活性,如贵金属负载、金属或非金属元素掺杂、构建异质结等.通过复合两个具有合适能带排布的半导体来构建异质结可以大大提高光生载流子的分离,被认为是一种有效的解决方案.最近提出了一种新的S型异质结概念,以解释不同半导体异质界面载流子转移分离的问题.S型异质结是在传统Ⅱ型和Z型(液相Z型、全固态Z型、间接Z型、直接Z型)基础上提出的,但又扬长避短,优于传统Ⅱ型和Z型.通常,S型异质结是由功函数较小、费米能级较高的还原型半导体光催化剂和功函数较大、费米能级较低的氧化型半导体光催化剂构建而成.三氧化钨禁带宽度较小(2.4-2.8 eV),功函数较大,是典型的氧化型光催化剂,也是构建S型异质结的理想半导体光催化剂.根据S型电荷转移机制,三氧化钨/二氧化钛复合物在光辐照下,三氧化钨导带上相对无用的电子与二氧化钛价带上相对无用的空穴复合,二氧化钛导带上还原能力较强的电子和三氧化钨价带上氧化能力较强的空穴得以保留,从而在异质界面上实现了氧化还原能力较强的光生电子-空穴对的分离.同时,石墨烯作为一种蜂窝状碳原子二维材料,是理想的电子受体,在异质结光催化剂中能及时转移电子.而且,石墨烯具有较好的导热性和电子迁移率,光吸收强,比表面积大,可为光催化反应提供丰富的吸附和活性位点,已经被认为是一种重要催化剂载体和光电分解水产氢的有效共催化剂.本文采用简便的一步水热法制备石墨烯修饰的三氧化钨/二氧化钛S型异质结光催化剂.光催化产氢性能测试表明,三氧化钨/二氧化钛/石墨烯复合材料的光催化产氢速率显著提高(245.8μmol g^-1 h^-1),约为纯TiO2的3.5倍.高分辨透射电子显微镜、拉曼光谱和X射线光电子能谱结果证明了TiO2和WO3纳米颗粒的紧密接触,并成功负载在还原氧化石墨烯(rGO)上.X射线光电子能谱中Ti 2p结合能的增加证实TiO2和WO3之间强的相互作用和S型异质结的形成.此外,复合材料中的rGO大大拓展了复合物的光吸收范围(紫外-可见漫反射光谱),增强了光热转换效应,而且rGO与TiO2之间形成肖特基结,促进了TiO2导带电子的转移和分离.总之,WO3和TiO2的S型异质结与TiO2和rGO之间的肖特基异质结的协同效应抑制了相对有用的电子和空穴的复合,有利于氧化还原能力较强的载流子的分离和进一步转移,加速了表面产氢动力学,于是增强了三元复合光催化剂的光催化产氢活性. 相似文献
8.
《物理化学学报》2020,(3)
本文采用简单的化学还原辅助水热法制备了一种新型Si C/Pt/Cd SZ型异质结纳米棒,并将Pt纳米粒子锚定在Si C纳米棒与Cd S纳米粒子的界面间,诱导电子-空穴对沿着Z型迁移路径进行转移。进行一系列的表征来分析该催化体系的结构,形貌和性能。X射线衍射(XRD)和X射线光电子能谱(XPS)结果表明,成功合成了具有较好晶体结构的光催化剂。通过透射电子显微镜证明,Pt纳米颗粒生长在Si C纳米棒和Cd S纳米颗粒的界面间。UV-Vis漫反射光谱显示,所制备的Z-型异质结样品具有比原始Cd S材料更宽的光吸收范围。光致发光光谱和瞬态光电流响应进一步证明具有最佳摩尔比的Si C/Pt/Cd S纳米棒样品具有最高的电子-空穴对分离效率。通过控制Si C和Cd S的摩尔比,可以有效地调节Si C/Pt纳米棒表面Cd S的负载量,从而使得Si C/Pt/Cd S纳米棒光催化剂达到最佳性能。当Si C:Cd S=5:1 (摩尔比)时可以达到最佳产氢性能,其最大析氢速率达到122.3μmol·h~(-1)。此外,从扫描电子显微镜、XRD和XPS分析可以看出,经过三次循环测试后,Si C/Pt/Cd S光催化剂的形貌和晶体结构均基本保持不变,表明Si C/Pt/Cd S纳米复合材料在可见光下产氢时具有稳定的结构。通过选择性光沉积技术在光反应中同时进行Au纳米粒子的光还原沉积和Mn3O4纳米粒子光氧化沉积以证明电子-空穴对的Z-型转移机制。实验结果表明,Cd S导带上的电子主要参与光催化过程中的还原反应,Si C价带上的空穴更容易发生氧化反应,其中,Si C的导带上的电子将与Cd S价带上的空穴复合形成Z型传输路径。因此,提出了在光催化产氢过程中Si C/Pt/Cd S纳米棒催化体系可能的Z-型电荷迁移路径来解释产氢活性的提高。该研究为基于Si C纳米棒的Z-型光催化体系的合成提供了新的策略。基于以上分析,Si C/Pt/Cd S纳米复合材料具有高效、廉价、易于制备、结构稳定等优势,具有突出的商业应用前景。 相似文献
9.
《物理化学学报》2021,(6)
S型异质结的提出是光催化领域发展的一个重要新理论。本研究通过典型的溶剂热法制备了NiS_2和MoSe_2,并通过原位生长的方法将二者复合,构建了S型异质结。所得的复合材料在光催化析氢中显示了优异的性能,产氢速率达7mmol·h~(-1)·g~(-1),是纯NiS_2和MoSe_2的2.05倍和2.44倍。进一步研究证实,NiS_2和MoSe_2耦合可以增强对光吸收强度。与纯NiS_2和MoSe_2相比,NiS_2/MoSe_2更高的光电流密度和更低的阴极电流及更低的电化学阻抗均证明了NiS_2/MoSe_2复合物可以有效促进光生电子的转移。同时,更低的荧光强度表明了NiS_2/MoSe_2复合物对电子-空穴再次复合的有效抑制,这为光催化析氢反应提供了有利的条件。另一方面,通过扫描电子显微镜和透射电子显微镜发现,MoSe_2作为一种无定型样品包围NiS_2纳米微球,这大大增加了两者之间的接触面积,从而增加了反应的活性位点。其次,在该光反应体系中,曙红(EY)作为一种光敏剂,有效地增强了催化剂对光的吸收。同时,在敏化过程中,曙红提供了电子给催化剂,这有效提高了光催化反应效率。S型异质结的建立有助于提高反应体系的氧化还原能力,是光催化还原水产氢反应析氢效果提高的主要原因。通过模特肖特基和光子能量曲线确定NiS_2和MoSe_2的导带、价带位置,进一步证明了S型异质结的建立。这项工作为研究S型异质结有效提高光催化制氢效率提供了新的参考。 相似文献
10.
《催化学报》2021,(6)
利用人工光合成将太阳能转化为化学燃料是太阳能利用的重要途径,具有广阔的应用前景,其中,太阳能光催化分解水制氢是最为关键的反应之一.但是,大多数半导体光催化材料面临着光生电荷分离困难和表面催化反应速率慢等挑战.本文以具有可见光响应的半导体光催化剂Cd_(0.9)Zn_(0.1)S(CZS)纳米棒为研究模型,利用水热法成功在其表面上均匀地组装氧化钴物种(CoO_x),构建了多级异质结构CZS@CoO_x.扫描电子显微镜和透射电子显微镜显示,表面组装的CoO_x物种均匀地覆盖在CZS纳米棒的整个表面上,形成了有序的CZS@CoO_x核壳多级异质结构.高分辨率透射电子显微镜进一步确认了氧化钴晶格间距与六方CZS的(002)晶面高度匹配,利于光生电荷在界面的分离和转移.稳态荧光光谱测试表明,与物理混合的样本相比,CZS@CoO_x多级异质结构表现出明显降低的荧光强度,说明多级异质结构能有效促进光生电子-空穴对的分离.时间分辨荧光光谱结果显示,CZS@CoO_x多级异质结构的平均光生电荷寿命明显增长,进一步确认了多级异质结构对光生电荷分离的作用.此外,电化学开路电位测量显示,增强的开路电压响应归因于多级异质结构CZS@CoO_x中致密的界面接触.电化学阻抗谱进一步确认,与没有形成致密界面结构的CZS-CoO_x和CZS/CoO_x相比,多级异质结构CZS@CoO_x的电荷转移电阻大幅度降低,从而确保了更快的界面电荷分离和转移.最后对CZS@CoO_x多级异质结构的光催化产氢活性进行了评价,发现其光催化产氢的性能远高于贵金属Pt/CZS光催化剂;进一步测量了CZS@CoO_x的表观量子效率,在420 nm处光催化产氢的表观量子效率为20%.此外,在多级异质结构CZS@CoO_x上进一步引入Pt助催化剂,可将表观量子效率进一步提升至37%.本文报道的这一简易可行的表面组装构建多级异质结构的策略有望在太阳能光催化领域发挥重要作用. 相似文献
11.
半导体光催化是一种理想的太阳能化学转化绿色技术,可以实现水分解制氢和CO_2光还原制备碳氢化合物燃料.氧化锌(ZnO)作为一种直接带隙半导体材料,一方面具有性能优异、价格低廉、易制备等优点;另一方面因光腐蚀而不稳定,大大限制了该材料的实际应用.本文提出了一种简单易行的类石墨碳修饰方法,可以有效提高ZnO用于CO2光还原的光催化活性和稳定性.首先采用水热法在金属锌片基底上生长ZnO纳米棒阵列(ZnO-NRA),然后通过葡萄糖水热法进行不同含量的类石墨碳(C-x)修饰,形成ZnO-NRA/C-x纳米复合结构,同步实现碳包覆和碳掺杂.X射线衍射结果表明,ZnO纳米棒及ZnO-NRA/C-x纳米复合结构都具有良好的纤锌矿型(Wurtzite)结构;而拉曼散射则清楚地证实了类石墨碳的存在.扫描电子显微观察显示,生长的ZnO纳米棒长度大约2-5mm,直径为400-700 nm,沿方向[0001]生长,端部由六个规则的(103)晶面组成,进一步直观佐证了ZnO的典型纤锌矿型结构特征.透射电子显微分析结果表明,ZnO-NRA/C-x纳米复合结构中类石墨碳包覆层厚度大约为8 nm.ZnO-NRA/C-x纳米复合结构的X射线光电子谱分析结果验证了C-C,C-O和C=O键的存在与碳的包覆层相对应;而C-O-Zn键的出现则是由于碳在ZnO中掺杂所引起.从紫外-可见吸收谱上可观察到ZnO的典型吸收带边位置约为385 nm,而碳的包覆和掺杂导致ZnO-NRA/C-x纳米复合结构的吸收带边发生红移,并且吸收背底明显提高.电化学阻抗谱测试结果清楚地显示,ZnO-NRA/C-x纳米复合结构比单纯ZnO-NRA的电化学阻抗明显降低,说明类石墨碳包覆层大幅度提高了电导性能,从而有利于光生载流子的分离和传输.荧光分析结果也表明,与单纯的ZnO-NRA相比,ZnO-NRA/C-x纳米复合结构的荧光强度大幅度下降,进一步证实了ZnO-NRA/C-x纳米复合结构比单纯的ZnO-NRA更有利于光生载流子的分离和传输.光电化学测试结果表明,ZnO-NRA/C-x纳米复合结构的瞬态光电流4倍于单纯的ZnO-NRA,而CO_2光还原性能测试也得到一致的结果.长时间多循环CO_2光还原实验证实,ZnO-NRA/C-x纳米复合结构具有稳定的光催化活性和极好的光稳定性.综上,我们利用一种简单易行的水热法进行类石墨碳修饰,成功开发了ZnO-NRA/C-x纳米复合结构,该结构因其优异的光生电子和空穴的分离和迁移性能,从而具有显著提升的CO_2光还原活性和光稳定性.本工作证明,类石墨碳修饰是一种可以广泛借鉴的有效提升半导体材料光催化活性和光稳定性的可行方法. 相似文献
12.
《催化学报》2017,(2)
光催化技术是目前解决能源和环境问题最具前景的手段之一,因此寻找高效光催化剂已成为光催化技术的研究热点.而在众多半导体催化剂中,廉价、环保且性能稳定的g-C_3N_4光催化剂在太阳光开发利用方面尤其引人关注.然而,由于g-C_3N_4的比表面小,活性位点少,以及光生电子/空穴对易复合等不足,严重导致其较低的光催化量子效率.因此,构造Z型体系和负载助催化剂等策略被广泛应用于提高g-C_3N_4光催化效率.在过去几年中,TiO_2,Bi_2WO_6,WO_3,Bi_2MoO_6,Ag_3PO_4和ZnO已经被成功证实可以与g-C_3N_4耦合而构造Z型光催化剂体系.其中,WO_3/g-C_3N_4光催化剂体系,具有可见光活性的WO_3导带中的光生电子和g-C_3N_4价带中的光生空穴容易实现Z型复合,从而保留了WO_3的强氧化能力和g-C_3N_4的高还原能力,最终大幅度提高了整个体系的光催化活性.在g-C_3N_4的各种产氢助催化剂中,由于常用的Pt,Ag和Au等贵金属的高成本和低储量等问题严重限制了它们的实际应用,所以近年来各种非贵金属助催化剂(包括纳米碳,Ni,NiS,Ni(OH)_2,WS_2和MoS_2等)得到了广泛的关注.我们采取廉价且丰富的Ni(OH)_x助催化剂修饰g-C_3N_4/WO_3耦合形成的Z型体系,开发出廉价高效的WO_3/g-C_3N_4/Ni(OH)_x三元产氢光催化体系.在该三元体系中,Ni(OH)_x和W0_3分别用于促进g-C_3N_4导带上光生电子和价带的光生空穴的分离及利用,从而使得高能的g-C_3N_4的光生电子在Ni(OH)_x富集并应用于光催化产氢,而高能的WO_3的光生空穴被应用于氧化牺牲剂三乙醇胺,最终实现了整个体系的高效光催化产氢活性及稳定性.我们通过直接焙烧钨酸铵和硫脲制备出WO_3纳米棒/g-C_3N_4,并采用原位光沉积方法将Ni(OH)_x纳米颗粒负载到WO_3/g-C_3N_4上.随后,我们采取X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱分析(XPS)和比表面和孔径分布等表征手段来研究光催化剂的结构与形貌;采取紫外-可见漫反射表征方法来研究其光学性能;采取荧光光谱,阻抗和瞬态光电流曲线等表征手段来测试光催化剂的电荷分离性能;采取极化曲线和电子自旋共振谱等表征手段来证明光催化机理;采取光催化分解水产氢的性能测试来研究光催化剂的光催化活性与稳定性.XRD,HRTEM和XPS表征结果,表明WO_3为有缺陷的正交晶系的晶体,直径为20-40纳米棒且均匀嵌入在g-C_3N_4纳米片上;Ni(OH)_x为Ni(OH)_2与Ni的混合物,其Ni(OH)_2与Ni的摩尔比为97.4:2.6,Ni(OH)_x粒径为20-50 nm且均匀分散在g-C_3N_4纳米片上,WO_3/g-C_3N_4/Ni(OH)_x催化剂界面之间结合牢固,其中WO_3和Ni(OH)_x均匀分布在g-C_3N_4上.紫外-可见漫反射表征结果表明,随着缺陷WO_3的负载量增加,复合体系的吸收边与g-C_3N_4相比产生明显的红移,而加入Ni(OH)_x助催化剂使得催化剂体系的颜色由黄变黑,明显地增加了可见光的吸收.荧光光谱,阻抗和瞬态光电流曲线结果表明,WO_3和Ni(OH)_x的加入能有效地促进光生电子/空穴的分离.极化曲线结果表明,掺入WO_3和Ni(OH)_x能降低g-C_3N_4的析氢过电位,从而提高光催化剂表面的产氢动力学.·O_2~-和·OH电子自旋共振谱表明成功形成了WO_3/g-C_3N_4耦合Z型体系.光催化分解水产氢的性能测试表明,20%WO_3/g-C_3N_4/4.8%Ni(OH)_x产氢效率最高(576μmol/(g·h)),分别是g-C_3N_4/4.8%Ni(OH)_x,20%WO_3/g-C_3N_4和纯g-C_3N_4的5.7,10.8和230倍.上述结果充分证明,Ni(OH)_x助催化剂修饰和g-C_3N_4/WO_3 Z型异质结产生了极好的协同效应,最终实现了三元体系的极高的光催化产氢活性. 相似文献
13.
《催化学报》2017,(2)
TiO_2具有高效、廉价、无毒及光化学稳定性好等优点,因而被广泛应用于光能转化和利用领域,如太阳能电池、光催化分解水制氢和环境污染物降解等.但是,TiO_2仍然存在一些缺陷制约了其应用,其中,最关键的问题是光生电荷分离效率低.因此,人们对其进行了掺杂、异质结构建和Z型结构建等来解决这一问题,其中Z型结近年来备受关注.全固体Z型结的构建目前主要有两种方式:PSI-C-PSII和PSI-PSII.前者PSI与PSII间要插入中间导电层(如Au、rGO等)来实现界面欧姆接触;后者则无中间层,而是基于界面设计来实现欧姆接触.本文以构建PSI-PSII Z型结为目标,以TiO_2和WO_3为基础半导体材料,采用原位溶剂热生长的方法构建WO_3量子点/TiO_2结构,借助氢气还原反应在界面处引入氧缺陷.采用透射电子显微镜、X射线衍射和拉曼光谱研究了复合晶体结构,采用X射线光电子能谱、紫外可见光谱和荧光光谱等手段研究了Z型结的界面结构和能带结构.结合光催化分解水产氢活性来建立Z型结结构与光催化性能的关联关系.表征结果表明,在TiO_2上进行原位溶剂热成核反应可点缀WO_3量子点,并且量子点粒径随W前驱体用量的增加而变大.两种半导体材料为TiO_2锐钛矿和WO_3晶体结构,且WO_3的XRD特征峰和Raman特征吸收峰会随W前驱体用量增加而变大.通过对WO_3/TiO_2进行氢气还原处理,使其表面形成大量W~(5+)和氧缺陷,一方面提高了催化剂对可见光的吸收,另一方面在界面形成欧姆接触,实现了Z型结构的构建.Z型结构实现了光催化分解水产氢反应,其中WTH10光催化活性最好.本文为新型Z型光催化剂的设计和构建提供了新思路和策略. 相似文献
14.
为了应对日益加剧的环境和能源危机,利用太阳能生产化学燃料迫在眉睫.太阳能光催化水分解产氢因其可利用阳光生产绿色H2燃料被认为是一种廉价且环境友好的技术.但是,要实现理想的产H2通常依赖于牺牲试剂的消耗,这会增加成本并会产生无利用价值的氧化产物.实际上,生物质(醇、胺和糖)可以替代牺牲试剂,在产生H2的同时获得有经济价值的化学品.其中,苯甲醇的C–C偶联氧化产物包括安息香、脱氧安息香、氢化安息香等,这些氧化产物是合成具有生物活性聚合物引发剂的重要结构基序.然而,目前光催化氧化苯甲醇的主要产物是苯甲醛,很少得到高选择性的C–C偶联产物.因此,设计一种能够同时实现光催化产氢和C–C偶联产物的合成的新型光催化剂是光催化领域面临的重要挑战.本文制备了Co纳米颗粒负载的共暴露(001)/(101)晶面的相结Cd S,并应用于光催化氧化苯甲醇合成氢化安息香和产氢.可见光下照射9 h后, HC-Cd S2/Co的光催化产氢速率达到11 mmol·g–1,分别是C-Cd S/Co和HC-Cd S2产氢速率的4.7倍和34倍.在HC-Cd S2上负载Co后,氢化安息香的选择性由12%... 相似文献
15.
《催化学报》2017,(12)
光催化水分解是一种经济而且可持续的利用太阳能来制备洁净能源氢气的方式,因此寻找和开发高效稳定的光催化剂已成为光催化产氢领域的研究热点.CdS因其具有高效、廉价、较负的导带位置等优点而引起人们的关注.然而,由于CdS镉本身光生电子/空穴对易复合,以及存在光腐蚀等不足,限制了其实际利用.为了提高CdS的光催化水分解产氢性质,人们开发了构建异质结和负载助催化剂等策略.近年来,ZnO,g-C_3N_4,TiO_2等半导体已被证实可以与CdS一起形成Ⅱ型异质结来促进光生电子和空穴的分离,进而提升光催化产氢性质.此外,传统的type Ⅰ型CdS/ZnS异质结也被证实能提高光催化产氢速率.研究表明,ZnS一方面能够钝化CdS表面态,另一方面ZnS半导体中存在缺陷能(VZn,IS),有利于转移CdS价带的空穴,最终大幅度提高了整个体系的光催化活性.在适用于CdS的各种助催化剂中,由于常用的Pt,Pd和Ru等贵金属的高成本严重限制了它们的实际应用,所以近年来基于过渡金属的各种非贵金属助催化剂(包括MoS_2,Ni_2P,FeP,Ni_3N,NiS,Ni(OH)_2等)得到了广泛的研究.我们采用原位化学沉积法将无定型的NiS助催化剂修饰在CdS/ZnS异质结表面,开发出廉价高效的NiS-CdS/ZnS三元产氢光催化体系.在该三元体系中,NiS和ZnS分别用于促进CdS导带上光生电子和价带的光生空穴的分离及利用,从而使得高能的CdS的光生电子转移到NiS表面并应用于光催化产氢,而高能的CdS的光生空穴被应用于氧化牺牲剂Na2S和Na_2SO_3,最终实现了整个体系的高效光催化产氢活性及稳定性.我们首先利用水热合成法得到大量的CdS纳米棒,然后使用化学浴沉积法在CdS表面沉积一定量的ZnS壳层,制备出CdS/ZnS异质结.光照前,采用原位化学沉积法将NiS颗粒负载在CdS/ZnS表面.光催化产氢的性能测试表明,当初始加入镍盐(20 mmol/L)量为100μL时,所得样品N2(NiS-CdS/ZnS)产氢效率最高(574μmol·h~(–1)),分别是CdS/NiS,CdS/ZnS和CdS的16.2,5.6和38倍.复合材料的表观量子效率高达43.2%.由此可见,NiS助催化剂和CdS/ZnS异质结存在协同效应,实现了三元体系的高效的光催化产氢性能.瞬态光电流测试结果表明,ZnS和NiS的加入能有效地促进光生电子/空穴的分离和利用.X射线衍射结果表明,CdS以六方相的形式存在,负载ZnS和NiS之后没有明显变化.高分辨透射电子显微镜照片和元素分布证实了NiS-CdS/ZnS复合材料中ZnS和NiS富集在纳米棒表层,其中NiS没有明显晶格条纹.紫外-可见漫反射结果表明,NiS和ZnS的负载后,复合材料的吸收边和纯相的CdS相近,而加入NiS助催化剂使得复合催化剂的颜色变黑,进而增加了可见光的吸收. 相似文献
16.
近些年来,关于抗生素药物的研究越来越多.在1998-2018的20年间,共计发表了超过5000篇关于抗生素废水处理的研究论文.其中,由于绿色环境友好型的特点,光催化降解抗生素废水成为一个新的研究热点而备受关注.本文总结了近些年来的光催化技术在抗生素废水中应用的研究进展,包括抗生素废水的降解以及转化抗生素废水产氢.对于常用的催化剂材料体系也同样进行了讨论.所涉及到的抗生素主要包含了四种常见的种类,分别是四环素类,磺胺类,β-内酰胺类以及喹诺酮类抗生素.此外,本文还列出了光催化在抗生素废水中的未来发展与挑战的前景,特别是在光催化转化抗生素废水制氢方面.在光催化氧化去除抗生素的研究中,早期的催化剂体系以TiO2基氧化物体系为主.然而,随着研究的深入, TiO2基催化剂材料一般只能响应紫外光,将极大限制其在未来的工业化应用中.人们致力于开发新的可响应可见光甚至远红外光的材料体系.而硫化物以及氮化物基材料可以满足在可见光实现光催化抗生素废水的降解.然而,由于这两类催化剂材料的价带位置过高,氧化能力不足,在可见光下的降解效果也有限.铋系材料则同时可以解决... 相似文献
17.
18.
《催化学报》2017,(12)
新型金属有机骨架(MOFs)材料是一类比较新颖的可用作光催化剂的潜在材料.它是由金属离子或金属簇单元与有机配体通过配位作用自组装形成的一类具有周期性多维网络结构的多孔晶态材料.MOFs结构具有高度的有序性、一定程度上的可设计性和可剪裁性,其高度发达的孔结构使得它具有超高的比表面积.MOFs结构中的金属簇被认为可以扮演半导体量子点的角色,同时其有机配体基于天线效应,在光激发条件下用来活化这些金属簇,从而使得MOFs成为可能的光催化剂.ZIF-9由角共享四面体CoN4单元组成,其中Co2+阳离子和苯并咪唑阴离子之间的配位键是N供体配体,因而具有良好的热稳定性和较高的碳氮含量.本文在一定浓度的甲醇溶液中通过光沉积法将CuO附着于ZIF-9表面上,用于光催化活性测试,并与g-C_3N_4/CuO催化剂进行了比较.结果表明,ZIF-9/CuO催化剂活性是g-C_3N_4/CuO催化剂的19.4倍.这是由于比表面积的不同,导致所吸附的染料与暴露的活性位点的不同.通过SEM,TEM,EDS,XRD,XPS,UV-Vis和稳态瞬态荧光等手段系统研究了催化剂反应动力学行为及内在机理.稳态荧光结果表明,染料的荧光发射峰和ZIF-9的吸收峰之间没有明显的重叠,染料的激发电子可以在该反应系统中从染料分子转移到ZIF-9上.除了一部分电子直接传输到达ZIF-9表面,更多的电子将最终通过CuO到达催化剂表面,最后与反应溶液中的H~+结合生成H_2,EY-ZIF-9/CuO(40%)的荧光衰减可以用双指数荧光衰减动力学即动态淬火机理.表明CuO的引入可以增强染料EY分子的聚集,从而增加该催化剂活性. 相似文献
19.
本研究设计了一种后功能化工艺方法修饰类石墨相氮化炭材料。通过此工艺成功得到了硼掺杂的介孔氮化炭材料,该材料比表面积高达125 m2/g,这为提升光催化分解水性能奠定了基础。利用X射线衍射、X射线光电子能谱,荧光光谱和紫外-可见光谱对材料进行了全面的表征。基于X射线光电子能谱分析,发现通过后功能化处理硼原子成功掺杂进入氮化炭的晶格中;通过吸收光谱分析得知,硼掺杂的介孔氮化炭材料增强了在可见光区的光吸收;通过荧光光谱分析得知,相比原始氮化炭材料,硼掺杂后的介孔氮化炭材料有着更低的荧光强度,意味着光生电子和空穴的分离得到了提升。对材料进行光催化分解水测试,后功能化处理得到的硼掺杂介孔氮化炭材料的产氢速率是原始氮化炭材料的10.2倍。此结论对后续利用后功能化工艺修饰材料提升材料性能具有一定的借鉴意义。 相似文献
20.
二甲四氯钠(MCPA-Na)是一种广泛用于牧场和果园的除草剂,但由于其生物降解性极低,已成为地下水和浅水中的主要污染物.研究发现,半导体可以有效地辅助降解转化危险化学品.ZnO纳米管因其中空结构和较大的比表面积,而在光催化降解有机物方面备受关注.但是,ZnO只能吸收紫外光,如果将其与窄带隙半导体进行复合,可以有效降低带隙,增强其在可见光区域的光吸收,表现出更好的光催化性能.WO_3是一种具有稳定物理化学性质及耐光腐蚀窄带隙半导体.采用WO_3修饰ZnO纳米管,能扩展ZnO吸收光的范围以及提高ZnO纳米管的耐光腐蚀性能.本文首先通过电化学合成的方法制备了ZnO纳米管,然后按照不同的W/Zn摩尔比将(NH4)6H2W12O40·XH2O滴加在纳米管表面,并在450°C下退火2 h制得ZnO-WO_3纳米管阵列.研究了不同WO_3含量的ZnO-WO_3纳米管光催化降解MCPA-Na性能,并且通过X射线光电子能谱(XPS)、傅里叶红外光谱仪(FTIR)、紫外可见光谱(UV-Vis)和光致发光光谱(PL)等手段研究了复合WO_3纳米颗粒后ZnO纳米管半导体光催化性能提高的原因.XPS结果表明,W元素在ZnO-WO_3纳米管阵列中以W6+的形式存在.FTIR结果表明,复合WO_3后的ZnO-WO_3复合半导体上比纯ZnO纳米管表面具有更多的-OH基团.由于-OH可以捕获光生空穴,并转化为具有反应活性的OH自由基,因此复合WO_3能在一定程度上提高ZnO纳米管的光催化活性.UV-Vis结果表明,WO_3的复合使得光谱发生明显红移,但随着WO_3含量的增加,ZnO-WO_3的吸光度明显增加.另外,PL结果表明,适当的复合WO_3可以抑制光生电子-空穴的复合.这是因为W6+和晶格氧的相互作用产生了较高不饱和键和表面缺陷,而表面缺陷可以作为光生载流子的陷阱,促进了光生电子和空穴的分离,因而光催化性能提高.在模拟太阳光下研究了不同WO_3含量的ZnO纳米管对光催化降解MCPA-Na溶液的性能.发现W/Zn摩尔比为3%的ZnO-WO_3样品表现出最好的光催化活性,200 min内其降解率为98.5%.与纯ZnO纳米管相比,其光催化循环性能也有所提高.利用Mott-Schottky测试方法并结合UV-vis结果,我们计算得到不同WO_3含量的ZnO-WO_3复合半导体导带价带位置.由于WO_3导带位置和价带位置都比ZnO的更高,WO_3上产生的光生电子会向ZnO的导带移动,而ZnO光生空穴向WO_3的价带移动,从而促使光生电子和空穴的分离,提高了光催化性能.但是如果WO_3复合的量太大,则在ZnO纳米管上分散性不好,反而成为光生空穴和电子复合中心,导致其光催化活性降低. 相似文献