首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
普鲁士蓝及其类似物具有独特的开放框架结构、丰富的储钠位点及较大的钠离子迁移通道,是最有商业化前景的钠离子电池正极材料之一.该类材料主要是利用共沉淀法或单一铁源自分解的方法合成.其超低的沉淀溶解平衡常数导致该类材料在制备过程中极易产生晶格缺陷和结晶水,造成比容量低、倍率能力欠佳和长期稳定性差.本文主要介绍了普鲁士蓝及其类似物材料的结构特征及其电化学特性,综述了该类材料的制备和改性方法,并对其作为钠离子电池正极材料的发展进行了展望.这一综述将推动普鲁士蓝材料在钠离子电池中的进一步研究,尤其是其新兴商业化进展.  相似文献   

2.
崔光  郭宜娇  刘培生 《化学学报》2012,70(24):2525-2528
通过粉末烧结和添加造孔剂法制备了直径为3~5 mm的多孔陶瓷球, 烧结温度为1573 K, 烧结时间1 h. 利用碱处理法对该多孔陶瓷球进行了脱硅处理, 降低了多孔陶瓷表面的Si/Al的物质的量之比, 并且利用扫描电镜对碱处理前后多孔陶瓷球的表面形貌进行了表征. 通过脱硅后陶瓷球与亚铁氰化钾溶液的反应, 对多孔陶瓷球进行了表面修饰, 在其表面生成了蓝色的普鲁士蓝类似物, 并且利用X射线粉末衍射分析、X射线能谱分析和红外光谱分析对该蓝色物质进行了表征. 利用砷酸二氢钠为砷源研究了修饰后陶瓷球的As离子吸附能力.  相似文献   

3.
制备了沸石基超轻宏孔陶瓷,并在其表面生长出具有离子交换功能的新型普鲁士蓝类似物。利用CdCl2为镉源研究了改性陶瓷对镉离子的吸附性能。考察了陶瓷用量、pH值、吸附时间等对吸附性能的影响。实验结果表明,室温下(25℃),经普鲁士蓝类似物修饰的超轻宏孔陶瓷的用量为0.5g,吸附时间为16h,pH=8时对500mL浓度为100mg/L的CdCl2溶液进行吸附,最大吸附量可达66.2mg/g。  相似文献   

4.
负热膨胀化合物可调控材料的热膨胀系数,在复合材料、精密仪器等方面具有重要的应用前景,成为近年来化学、物理和材料工程领域的研究热点之一.因其晶体结构主要由—M—CN—M—含有双原子氰根(CN)链组成,许多普鲁士蓝类化合物呈现反常的热膨胀性质.本文综述了普鲁士蓝类负热膨胀化合物结构、热膨胀机制与系数调控等方面的研究进展.以氰根配体数量为分类主线,将具有反常热膨胀性的氰根配体化合物分为氰化物、六氰基和八氰基普鲁士蓝类化合物等进行介绍,从局域结构和平均结构角度分析了N和C原子的横向振动对负热膨胀贡献的角度解释了机理,从客体离子或分子嵌入的方法分析了热膨胀调控原理,并对新型普鲁士蓝类负热膨胀化合物的设计及应用进行了展望.  相似文献   

5.
王强明  蒋成  赵继华  方建 《分析化学》2022,50(3):392-404
通过化学沉淀法合成了钴-钴普鲁士蓝类似物(CoCo-PBA)纳米立方前驱体,掺杂Sn4+后,将其在空气中高温热解,制备中空多孔SnCoOx,然后通过超声将SnCoOx固定在石墨毡(GF)上,制成复合电极(SnCoOx/GF).利用X-射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、X-射线光电子能谱(XPS)、扫...  相似文献   

6.
7.
以玻碳电极(GCE)为基底,采用恒电位法沉积一层普鲁士蓝(PB),然后将苝四甲酸二酐衍生物(PTC-NH2)自组装到其表面,形成既带氨基功能团,又可有效防止PB渗漏的导电膜.通过静电吸附和共价键合作用固定纳米金和辣根过氧化物酶(HRP)的复合物,从而制得性能优良的过氧化氢(H2O2)生物传感器.采用循环伏安法(CV)和计时电流法,考察了传感器的电化学性能.实验表明,本传感器具有灵敏度高、线性范围宽、检出限低、稳定性好、抗干扰能力强等特点.其线性范围为2.0×10-6~1.4×10-3mol/L;检出限为8.3×10-7mol/L(S/N=3).  相似文献   

8.
以玻碳电极(GCE)为基底,采用恒电位法沉积一层普鲁士蓝(PB),然后将j芑四甲酸二酐衍生物(PTC-NH,)自组装到其表面,形成既带氨基功能团,又可有效防止PB渗漏的导电膜。通过静电吸附和共价键合作用固定纳米金和辣根过氧化物酶(HRP)的复合物,从而制得性能优良的过氧化氢(H2O2)生物传感器。采用循环伏安法(CV)和计时电流法,考察了传感器的电化学性能。实验表明,本传感器具有灵敏度高、线性范围宽、检出限低、稳定性好、抗干扰能力强等特点。其线性范围为2.0×10^-6~1.4×10^-5mol/L;检出限为8.3×10^-7mol/L(S/N=3)。  相似文献   

9.
通过实验和理论已经验证钴基氧化物是一种很有前景的析氧反应(OER)催化剂。然而,普通的钴基催化剂在酸性环境中非常不稳定,在酸性电解质中容易被腐蚀。因此,在目前的研究中,设计出能在强酸性条件下同时保持活性和稳定性的析氧催化剂是实现大规模工业制氢应用的一项重要挑战。因此,我们报道了通过在四氧化三钴的尖晶石晶格中引入锰(Mn)从而产生富含缺陷的催化剂(CoMn1O),它在酸性电解质中具有较长的使用寿命。我们利用X射线衍射(XRD)、X射线光电子能谱(XPS)、高分辨率透射电子显微镜(HRTEM)和能量色散光谱(EDS)元素图研究了晶相结构和化学价态。在引入锰后,由于局部晶体结构的改变,产生了大量的缺陷。此外,随着锰含量的增加,可以观察到Co 2p光谱的红移,这表明Co的总价逐渐增加,形成了更稳定的Co-O键。此外,当Mn与Co的比例达到1(CoMn1O)时,目标催化剂表现出良好的OER活性,在10和50mA·cm-2时,过电位分别为415和552 mV。详细的物理表征和电化学测试表明,CoMn1O比不含锰...  相似文献   

10.
光催化剂Bi1-xGdxVO4的制备和表征及其光催化分解水   总被引:2,自引:0,他引:2  
通过高温固相法合成了不同组分的光催化剂Bi1-xGdxVO4(x=0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0), 并用X射线衍射(XRD)、紫外-可见漫反射光谱(DRS)、比表面积分析(BET)、扫描电子显微镜(SEM)对催化剂Bi1-xGdxVO4进行了表征和分析. XRD结果表明, 在Bi1-xGdxVO4中存在两种结构, 当0.3≤x≤1.0时, Bi1-xGdxVO4为四方晶系硅酸锆型结构; 当x=0时, 为单斜晶系白钨矿结构BiVO4; 当0相似文献   

11.
Herein, we report a facile method for synthesizing MoCo-layered double hydroxide (LDH) nanosheets employing Prussian blue analog (PBA) as the precursor. The introduction of Mo in Co-LDH modulates the electronic structure, increases the number of active sites and electrochemical surface area to improve the hydrogen evolution, oxygen evolution, and overall water splitting activity. As a result, PBA-derived Mo0.25Co0.75-LDH nanosheets demonstrated 10 mA cm?2 current density at only 220 mV and 115 mV overpotentials for OER and HER, respectively. The overall water splitting was attained at 1.52 V cell voltage for 10 mA cm?2 current density.  相似文献   

12.
The efficiency of photocatalytic overall water splitting reactions is usually limited by the high energy barrier and complex multiple electron-transfer processes of the oxygen evolution reaction (OER). Although bismuth vanadate (BiVO4) as the photocatalyst has been developed for enhancing the kinetics of the water oxidation reaction, it still suffers from challenges of fast recombination of photogenerated electron-hole pairs and poor photocatalytic activity. Herein, six MII-CoIII Prussian blue analogues (PBAs) (M=Mn, Fe, Co, Ni, Cu and Zn) cocatalysts are synthesized and deposited on the surface of BiVO4 for boosting the surface catalytic efficiency and enhancing photogenerated carries separation efficiency of BiVO4. Six MII-CoIII PBAs@BiVO4 photocatalysts all demonstrate increased photocatalytic water oxidation performance compared to that of BiVO4 alone. Among them, the Co−Co PBA@BiVO4 photocatalyst is employed as a representative research object and is thoroughly characterized by electrochemistry, electronic microscope as well as multiple spectroscopic analyses. Notably, BiVO4 coupling with Co−Co PBA cocatalyst could capture more photons than that of pure BiVO4, facilitating the transfer of photogenerated charge carriers between BiVO4 and Co−Co PBA as well as the surface catalytic efficiency of BiVO4. Overall, this work would promote the synthesis strategy development for exploring new types of composite photocatalysts for water oxidation.  相似文献   

13.
14.
Prussian blue and its analogs bonded to poly(vinylamine hydrochloride) (PVAm · HCl) containing FeII or FeIII and M2+ (M=Fe, Co, Cu) in a 11 molar ratio were obtained by the reaction of [Fe(CN)6] n (n=3,4) with M2+ ion-PVAm · HCl mixture in aqueous solution. Under a limited polymer concentration (TVAm/TFe over 10), these polymer complexes thus obtained were stable and soluble in water. By casting these solutions, colored films can be produced. The formation of Prussian blue and its analogs bonded to PVAm · HCl was also investigated by the Benesi-Hildebrand method. The molar extinction coefficients of intervalence charge transfer (FeIIFeIII, CoIIFeIII, FeIICuII) band for MFe(CN)6](n–2)– bound to PVAm · HCl (M=Fe, Co, Cu) were found to be 10,100–9601 · mol–1 · cm–1 at 25 C. The formation constants were found to be in the range of 107 to 1010 M–1. The changes of enthalpy (H) and entropy (S) were found to be in the range of –10.4 to –22.5 kJ · mol–1 and 5.7 to 52.9 J · K–1 mol–1 respectively, at 25C.  相似文献   

15.
电解水和锌-空气电池(ZABs)技术为解决能源危机、实现碳中和目标开辟了一条新的途径。然而,这些技术的实际应用在很大程度上受到析氢反应(HER)、析氧反应(OER)以及氧还原反应(ORR)缓慢动力学的限制。因此,迫切需要开发高效、稳定的电催化剂有效降低反应过电位,加快电催化反应进程。金属有机骨架(MOFs)由于其灵活可调的组成和精确可控的结构,已成为催化领域研究最广泛的材料之一。本文聚焦于MOFs基电催化剂的制备策略和结构特性,主要介绍它们在电解水和ZABs方面近期的研究进展,并对该领域存在的问题和发展趋势进行了总结和展望。  相似文献   

16.
电解水和锌-空气电池(ZABs)技术为解决能源危机、实现碳中和目标开辟了一条新的途径。然而,这些技术的实际应用在很大程度上受到析氢反应(HER)、析氧反应(OER)以及氧还原反应(ORR)缓慢动力学的限制。因此,迫切需要开发高效、稳定的电催化剂有效降低反应过电位,加快电催化反应进程。金属有机骨架(MOFs)由于其灵活可调的组成和精确可控的结构,已成为催化领域研究最广泛的材料之一。本文聚焦于MOFs基电催化剂的制备策略和结构特性,主要介绍它们在电解水和ZABs方面近期的研究进展,并对该领域存在的问题和发展趋势进行了总结和展望。  相似文献   

17.
Herein, we establish a simple synthetic strategy affording a heterogeneous, precious metal‐free, dye‐sensitized photoelectrode for water oxidation, which incorporates a Prussian blue (PB) structure for the sensitization of TiO2 and water oxidation catalysis. Our approach involves the use of a Fe(CN)5 bridging group not only as a cyanide precursor for the formation of a PB‐type structure but also as an electron shuttle between an organic chromophore and the catalytic center. The resulting hetero‐functional PB‐modified TiO2 electrode demonstrates a low‐cost and easy‐to‐construct photoanode, which exhibits favorable electron transfers with a remarkable excited state lifetime on the order of nanoseconds and an extended light absorption capacity of up to 500 nm. Our approach paves the way for a new family of precious metal‐free robust dye‐sensitized photoelectrodes for water oxidation, in which a variety of common organic chromophores can be employed in conjunction with CoFe PB structures.  相似文献   

18.
A novel self-assembled Magnetic Prussian Blue/Reduced Graphene Oxide (3D-MPBRGO) aerogel was prepared by an easy and cost effective process for elimination of radioactive Cesium from contaminated aqueous solution selectively. The 3D-MPBRGO displayed excellent adsorption capability of 3.64 mmol per g or (484.12 mg/g) for Cs (initial 50 mM cesium concentration, pH 7 and 30 °C) and quick separation from solution by applying magnetic field as compared to previously published results for graphene based adsorbents. This excellent removal efficiency of nanocomposite can be ascribed to enlarged adsorbent surface area (402.68 m2/g) and uniform distribution of nanoparticles on RGO which removes aggregation of sheets as well. The thermodynamic analysis displayed exothermic and spontaneous nature of Cs ion adsorption. The experimental data of adsorption isotherm followed the Langmuir isotherm model than that of Tempkin and Freundlich while adsorption kinetics followed pseudo second order.  相似文献   

19.
The apparent redox response of Prussian blue (PB, iron(III) hexacyanoferrate(II)) within a paper matrix is similar to that found in conventional liquid electrolyte voltammetry using a PB-modified electrode; however part of the response is from PB which adsorbs onto the glassy carbon (GC) working electrode. Application of a Nafion® coating to the PB-impregnated paper matrix prevents transfer of PB to the GC surface. In contrast to the PB system, the redox response of the 1,1′-dimethyl-4,4′-bipyridilium (MV, methyl viologen) system, where both redox states examined are soluble, is confined wholly to the paper matrix. For the case of 1,1′-diheptyl-4,4′-bipyridilium (HV, heptyl viologen), the electrogenerated insoluble radical cation salt adsorbs onto the GC electrode, the KCl-impregnated paper acting simply as the electrolyte medium. PB can be electrogenerated within a paper matrix, with the possible application in monochrome electrochromic printing systems.  相似文献   

20.
One-pot green approach to the synthesis of Prussian blue nanocubes/reduced graphene oxide (PBNCs/RGO) nanocomposite had been attempted. It was based on the extract of mushroom with K3[Fe(CN)6] and graphene oxide (GO) as precursors, where the reduction of GO and the deposition of PBNCs occurred simultaneously. The obtained nanocomposite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and electrochemical techniques. With the introduction of β-cyclodextrin (β-CD), the β-CD/PBNCs/RGO system showed linear behavior in the range from 0.01 to 700 μM for 4-nitrophenol with a low detection limit of 2.34 nM (S/N = 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号