首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
金属-空气二次电池在可再生电能的存储和转换方面具有广阔的应用前景.在金属-空气二次电池的空气侧,放电时发生氧还原反应(ORR),充电时发生氧析出反应(OER).然而, ORR和OER反应的动力学过程缓慢,因此限制了金属-空气二次电池的实际应用.因此,发展高性能ORR和OER电催化剂对金属-空气二次电池的发展尤为重要.目前,大多数的研究集中在ORR或OER的单功能电催化剂上,而关于双功能电催化剂的研究和综述相对较少.两个反应均具有较高的过电位和较缓慢的动力学过程,而且充电过程的高电压会导致ORR催化剂失活,反之亦然.因此,开发针对这两个反应均具有高活性和高稳定性的双功能电催化剂极具挑战性.近年来,研究者对具有低成本和高性能双功能电催化剂进行了探索.这些双功能电催化剂包括碳基材料,过渡金属材料和复合材料.双功能电催化剂可以通过提高本征活性和表观活性两种策略来提高其整体的活性.其中,本征活性与晶体结构和电子结构密切相关,即可以通过调节晶体结构和电子结构来提高其本征活性.例如,可以改变金属-氧键的强度、氧空位浓度等来调变电催化活性.在碳基材料中掺杂杂原子可以改变碳的电荷密度分布,从而实现对电催...  相似文献   

2.
金属-空气电池具备诸多优势,譬如绿色环保、能量转化率高、启动快速、能量密度高、使用寿命和干态存储时间长等.与燃料电池相比,金属-空气电池结构简单,放电电压平稳,成本低,但依然存在一些制约发展的问题,如阴极催化剂.阴极催化剂在金属-空气电池中发挥催化氧还原反应(oxygen reduction reaction, ORR)和析氧反应(oxygen evolution reac-tion, OER)的关键作用.铂及其合金常用作 ORR的单功能催化剂,而钌和铱等是目前 OER催化效率最高的,但 ORR活性很低,因此需要开发出一种廉价而又具备双功能催化作用的催化剂.单异原子掺杂的碳基催化剂的研究集中在 ORR催化性能上,而多异原子共掺碳最近有研究表明具有双催化氧的性质,如氮磷共掺碳.在这些氮磷共掺的碳架中,氮磷共掺物起着 OER催化作用,掺氮物为 ORR催化的活性位点,而掺磷物起着强化作用.异原子掺杂负载的钴基催化剂(如掺氮还原氧化石墨烯载 Co3O4)是近年来双功能催化剂研究的另一个热点.钴基催化剂有着催化 ORR和 OER的多价价态,然而其本身导电性能差,这一缺陷可通过杂化石墨化碳来弥补,石墨化碳有着优良的导电性能.据我们所知,目前仍没有关于氮磷共掺碳负载的 Co3O4双催化氧的研究.我们合成了氮磷共掺碳(NPC)负载的 Co3O4(Co3O4/NPC),并首次探索了其氧还原和析氧性能. Co3O4/NPC合成分两步进行.首先通过三聚氰胺与植酸之间的酯化或缩聚覆盖在导电炭黑颗粒表面,在保护气氛下焙烧得到 NPC,然后经溶剂热反应以及空气中氧化合成 Co3O4/NPC.催化剂的性能综合考虑了催化活性和稳定性两方面.采用线性扫描伏安法评估了 OER和 ORR的催化活性.对于 OER, Co3O4/NPC的起始电势是0.54 V (以饱和甘汞电极为参比电极),在0.80 V时电流密度达到21.95 mA/cm2,均优于 Co3O4/C和 NPC. Co3O4/NPC的高效 OER催化可归因于氮磷共掺物与 Co3O4之间的协同作用.对于 ORR, Co3O4/NPC的催化效率与商用 Pt/C相近,它们的扩散极限电流密度分别为–4.49和–4.76 mA/cm2(E =–0.80 V).在 ORR过程中, Co3O4起到主要的催化作用.采用计时电流(电流-时间)法评估了催化剂的稳定性.经6 h测定,对于 OER, Co3O4/NPC剩46%电流;而对于 ORR,剩95%电流.整体而言, Co3O4/NPC在 OER和 ORR中都表现出高的催化效率以及良好的稳定性.  相似文献   

3.
目前,为了有效解决电化学能量转化反应动力学过程缓慢和商业化应用等问题,需要大力提高催化剂的电催化活性和稳定性,并大幅降低贵金属催化剂的用量.通常,铂(Pt)基催化剂对燃料电池的氧还原反应(ORR)和水电解过程的氢析出反应(HER)表现出很高的活性.然而,对于高效的金属-空气电池和水电解装置,其中的氧析出反应(OER)则需要高活性的非Pt电催化剂来降低电化学过电位及提高其对高电位的耐受性.虽然相较于Pt催化剂,IrO2和RuO2等贵金属催化剂表现出了更高的OER活性,然而,它们的稳定性差,难以满足实际应用需求,严重阻碍了其在金属-空气电池和水电解中的应用.通常,Pt对OER的低效催化主要归因于在OER电催化过程中Pt与电解液直接接触,导致Pt表面快速被氧化,形成Pt氧化物(Pt+4O2和Pt+2O)层.形成的Pt氧化物对OER不起催化作用,从而降低了Pt的利用率和总的水电解效率.为了避免Pt表面的快速氧化,实现高的OER性能,我们将Pt金属纳米粒子有效地限域在超薄功能多孔碳层内....  相似文献   

4.
锌空气电池(ZABs)具有高能量密度(1086 m Wh gZn–1)、价低、易回收等优势,引起了学者们的广泛关注.空气电极发生的氧还原反应(ORR)/氧析出反应(OER)是控制整个ZABs效率的关键.因此,设计和开发高效的ORR电催化剂对于ZABs商业化至关重要.目前, Pt基电催化剂仍是最有效的ORR电催化剂,但Pt资源稀缺,价格高昂,Pt基电催化剂稳定性差等缺点阻碍了其商业化.因此,研究高活性和高稳定性的ORR非贵金属电催化剂十分重要.碳点(CDs)作为一种新型的零维高分子碳材料,具有低毒、高导电性等优势,被广泛用于碳基材料的前驱体.CDs具有sp2杂化晶核、丰富的边缘位点和大量的官能团(如-NH2,-COOH和-OH),这些表面官能团为过渡金属原子提供了很强的锚定位点,可用于构筑各种碳负载过渡金属催化剂.本文设计合成了一种新型的碳基ORR电催化剂,其由CDs衍生的三维碳纳米花(CNF)负载Co单原子(SAs)和纳米颗粒(NPs)构成.利用CDs在二次水热过程中形成了3.66 nm的超薄纳米膜并构筑成3D的多孔CN...  相似文献   

5.
生物质碳基材料具有可调的微观结构、丰富的表面活性中心、优良的导电和导热性能以及较大的比表面积,已经成为新能源领域的重要基础材料.然而,应用于锌-空气电池中时,碳基材料高电位下的碳腐蚀问题严重影响了电池的稳定性,因此,开发具有低过电位的析氧反应(OER)催化剂来降低充电电压是解决该问题的关键.本课题组采用一种低温磷化策略制备了具有低OER过电位的P修饰的Fe3O4/Fe2N和生物质碳复合催化剂(P-Fe3O4/Fe2N@NPC),其具有较好的双功能氧反应活性,氧还原反应(ORR)的半波电位为0.86 V,仅需要280 m V的OER过电位就可以达到10 m Acm-2的电流密度.以P-Fe3O4/Fe2N@NPC作为正极组装的锌-空气电池表现出低的充放电电压差和长期稳定性,在目前报道的碳基催化剂应用于锌-空气电池中具有很大优势.此外,采用X射线光电子能谱(XPS)、拉曼光...  相似文献   

6.
随着能源危机的日益严峻,能源的储存和转换越来越受到人们的重视.目前人们加以开发和利用的清洁能源主要包括太阳能、风能、氢能、地热能以及电化学能等.其中,燃料电池和金属-空气电池等作为电化学器件为电化学能的开发及可持续利用提供了条件.特别是金属-空气电池以电极电位较负的金属如镁、铝、锌、铁等作负极,以空气中的氧或纯氧作正极,具有比能量高、性能稳定、价格便宜的特点.氧还原反应(ORR)和析氧反应(OER)是可再生电化学能量转换和储存过程中的两个关键电化学过程.贵金属(Pt/C, Ir/C, IrO2等)虽然具有高催化活性,但价格昂贵、资源匮乏限制了其大规模的使用和发展.此外,它们的催化性能单一,难以同时实现多反应的高效催化.目前,大量研究工作集中在开发低成本、高效的ORR和OER催化剂,用来代替昂贵的铂类贵金属催化剂.在能源器件设计中,由于OER和ORR反应发生在同一个电极上,若能制备出具有ORR和OER双功能催化性能的电催化剂,将在很大程度上降低能源器件的设计难度.最近,我们的研究工作揭示了吡啶-氮-钴(pyri-N-Co)配位结构在协同作用中的重要性,协同作用大幅度提升了NiCo2O4/N掺杂石墨烯的本征催化活性.虽然金属粒子与掺氮石墨烯的结合有利于催化活性和稳定性的提高,但二维石墨烯片之间由于π-π键相互作用,容易聚集和堆叠.在实际应用中,石墨烯片之间的堆叠会导致可达表面的损失,从而使复合催化剂利用率降低,结构稳定性变差.因此,制备富含充分暴露且高效的ORR/OER活性中心的电催化剂仍然是一个巨大挑战.本文采用激光辐照法和水热法制备了具有层间大孔和片内介孔相互交联结构且负载铁酸钴纳米颗粒的三维多级孔石墨烯复合电催化剂(CoFe/3D-NLG),研究了其微观结构与ORR/OER电催化性能的关系.比表面积和X射线光电子能谱测试结果表明, CoFe/3D-NLG具有大的比表面积(322.6 m2g-1)和孔体积(0.715 cm3g-1),并且富含吡啶氮-钴活性中心.电化学测试表明,对于OER电催化, CoFe/3D-NLG复合催化剂在10 mAcm-2处的过电势为304 mV,优于商用Ru O2催化剂的322 mV;对于ORR电催化, CoFe/3D-NLG的半波电位达到872 mV,非常接近商用Pt/C催化剂(876 mV).此外,作为可充电锌空气电池的空气电极催化剂, CoFe/3D-NLG展现出了超高的开路电压(1.56 V)、高功率密度(213 mWcm-2)以及超低充放电电压(0.63 V),并且具有良好的充放电循环稳定性.CoFe/3D-NLG优异的ORR/OER电催化性能主要归因于以下两点:1)大量的吡啶氮-钴活性位点极大地加快了缓慢的氧电催化动力学,提高了每个活性位点的ORR/OER本征催化活性;2)丰富的层间大孔和面内介孔多级孔结构促进了整个石墨烯结构中的高效传质,因而在电催化过程中吡啶氮-钴活性位点得以充分暴露于电解液中.  相似文献   

7.
目前,为了有效解决电化学能量转化反应动力学过程缓慢和商业化应用等问题,需要大力提高催化剂的电催化活性和稳定性,并大幅降低贵金属催化剂的用量.通常,铂(Pt)基催化剂对燃料电池的氧还原反应(ORR)和水电解过程的氢析出反应(HER)表现出很高的活性.然而,对于高效的金属-空气电池和水电解装置,其中的氧析出反应(OER)则需要高活性的非Pt电催化剂来降低电化学过电位及提高其对高电位的耐受性.虽然相较于Pt催化剂,IrO2和RuO2等贵金属催化剂表现出了更高的OER活性,然而,它们的稳定性差,难以满足实际应用需求,严重阻碍了其在金属-空气电池和水电解中的应用.通常,Pt对OER的低效催化主要归因于在OER电催化过程中Pt与电解液直接接触,导致Pt表面快速被氧化,形成Pt氧化物(Pt^+4O2和Pt^+2O)层.形成的Pt氧化物对OER不起催化作用,从而降低了Pt的利用率和总的水电解效率.为了避免Pt表面的快速氧化,实现高的OER性能,我们将Pt金属纳米粒子有效地限域在超薄功能多孔碳层内.前期,已有大量的有关金属基ORR和HER催化剂研究证明,这种策略对于稳定金属纳米颗粒非常有效,可有效避免金属催化剂的快速氧化,而且还可抑制金属颗粒迁移和团聚;此外,还有利于增强催化剂的导电性和离子物种的扩散能力,从而提高催化剂的电催化性能.然而,要达到提高金属催化剂OER电催化性能的目的,还需要设计一种具有优良结构的功能化异质原子掺杂多孔碳基限域材料.金属有机框架(MOF),特别是MOF-253,由于具有较高的柔韧性、丰富的孔、可控的几何结构和高比表面积,被认为是制备功能多孔碳基限域材料的理想前驱体.为此,通过结合功能多孔碳基材料的限域作用及MOF-253和超细Pt纳米单晶的优势,本文合成了MOF-253衍生氮掺杂碳(N/C)限域的Pt纳米单晶(Pt@N/C)核壳型电催化剂.制备的Pt-N-C框架不仅具有超薄的氮掺杂活性多孔碳保护层壳体(平均厚度为0.51 nm),还有具高度分散和稳定化的Pt纳米单晶核体;值得指出的是,因受到碳层的限域作用,即使经900℃的高温处理,Pt纳米单晶仍保持了较小的晶体尺寸(平均粒径仅为6.7 nm);此外,该催化剂的Pt载量较低,仅为6.1wt%(Pt@N/C-10).将其作为OER电催化剂,表现出优异的OER性能:在10 mA cm^-2电流密度下,其过电位仅为298 mV,低于商业IrO2催化剂(353 mV);而且,经2000周加速电位扫描后,其电位仅降低19.4 mV,也低于IrO2(23.3 mV).本文很好地证明了通过构建空间限域结构可以有效解决Pt等金属催化剂因表面氧化而导致OER动力学活性和稳定性低的问题.  相似文献   

8.
能源和环境问题是制约人类延续和发展的首要问题,高效便宜的能源存储和转换装置吸引着广泛注意。基于便携式,功率密度高,无污染等,可充放电锌-空气电池(ZAB)被大量研究。然而,阴极的氧还原(ORR)和氧析出反应(OER)缓慢的动力学限制了ZAB的实际应用。开发电催化高效,便宜,高稳定性的双功能电催化剂至关重要,而其中将过渡金属和碳基材料复合是明智的决定。磷化钴(Co_2P)化合物已经广泛研究用作高效的OER催化剂,但是对于催化剂的ORR活性很少研究。在此,本论文通过简单热处理钴盐和植酸掺杂的k-卡拉胶复合物制备出磷化钴封装在磷掺杂的多孔碳(Co_2P-PCA-800)纳米催化剂。该催化剂具有3D分级多孔结构,表现出具有与商用Pt/C相当的半波电位(E_(1/2)) 0.84 V,从而满足了可充放电锌-空电池需求。同时,我们还制备了磷掺杂的多孔碳(PCA)和钴掺杂的多空碳(Co-CA),对比了结构形貌对性能的影响。结果表明,具有完整的多孔结构,在每个位点的阻抗更一致,从而会有更多的有效活性位点。高效的ORR和OER活性主要归功于3D蜂窝分层多孔结构和正电荷磷化钴(Co_2P)纳米颗粒的协同作用。此外,蜂窝状3D孔结构不仅利于传质和加快电子传输也保护了磷化钴,让其更稳定。最后,我们组装了可充放电锌-空气电池用Co_2P-PCA-800作空气阴极催化剂。相比贵金属,该催化剂组装的ZAB具有接近的充放电性能和能量密度以及更高的比容量和更好的稳定性。这项工作也为解决能源和环境问题提供了新思路。  相似文献   

9.
金属空气电池阴极氧还原催化剂研究进展   总被引:4,自引:0,他引:4  
王瀛  张丽敏  胡天军 《化学学报》2015,73(4):316-325
随着能源危机加剧和生态环境恶化, 可持续发展能源受到更大的重视. 金属空气电池作为一种绿色能源是具有很大发展潜力的新一代电池. 与传统电池相比, 此类电池有着更高的理论能量密度, 尤其是锂空电池, 能量密度可达3505 Wh/kg, 然而阴极缓慢的氧还原反应成为制约其发展的关键因素之一. 在简要介绍氧还原反应机理基础上, 着重介绍了近年来氧还原催化剂如贵金属及其合金、过渡金属氧化物/硫化物、功能化碳材料和金属氮化物的研究进展, 并根据目前所存在问题指出未来研究方向, 包括深入研究氧还原反应机理, 明确催化剂活性位; 研究催化剂结构等对催化活性的影响, 优化制备条件, 以提高催化活性和稳定性; 根据氧还原机理设计开发新型氧还原催化剂.  相似文献   

10.
高效氧催化反应中的金属有机骨架材料(英文)   总被引:1,自引:0,他引:1  
氧电催化反应包括氧气还原反应(ORR)和氧气析出反应(OER).作为核心电极反应,这两个反应对诸多能源存储与转换技术(比如燃料电池、金属空气电池以及全水分解制氢等)的能量效率起决定性作用.然而,ORR和OER涉及多个反应步骤、多个电子转移过程以及多相界面传质过程.这些复杂的过程较大程度上限制了ORR和OER的反应速率.从理论和实践两个方面来看,ORR和OER都需要高效电催化剂的参与来促进其反应速率,从而能够最终提高上述能源存储与转换技术的能量转换或利用效率.目前,以Pt,Pd,Ir,Ru为代表的贵金属基电催化剂具有十分突出的电催化性能.但是,过高的成本和过低的储量始终制约着贵金属基电催化剂在催化ORR和OER反应方面,乃至在能源存储与转换技术领域的规模化应用.因而,开发高效非贵金属基氧电催化剂成为近年来能源存储与转换领域的研究重点之一.在众多已经报道的非贵金属基氧电催化剂中,金属有机骨架材料(MOFs)备受瞩目.MOFs是一类由有机配体和金属节点通过配位键自组装而成的晶态多孔材料.它们具备超高比表面积、超高孔隙率以及规则性纳米孔道.相比较其他传统的多孔材料(比如活性炭、分子筛、介孔炭、介孔氧化硅等),MOFs最主要的优势在于它们的结构和功能可以依据需求通过选择合适的有机配体和金属节点进行便利地设计,或通过后处理进行必要的改性和调节.基于独特的多孔特性以及结构与功能的可设计、可调节性,MOFs在气体分离与存储、异相催化、化学传感、药物输送、环境保护以及能源存储与转化等领域都具有潜在的应用价值.因而,近年来,MOFs备受基础研究领域和工业界的青睐.针对MOFs开展的基础研究和应用开发逐渐成为诸多领域的研究焦点.也正由于MOFs具有的上述优异特性,尤其是结构与功能的可设计、可调节性,使得设计制备基于单纯MOFs以及MOFs衍生材料成为开发高效非贵金属基氧电催化剂的新途径.本综述首先论述了基于单纯MOFs的氧电催化剂(包括纯MOFs、活性物种修饰的MOFs以及与导电材料构成的复合MOFs)的合成以及它们在ORR或OER催化反应中应用的研究进展.在第二部分论述中,本综述主要针对MOFs衍生的各类氧电催化剂(包括无机微米-纳米结构/多孔碳复合材料、纯多孔碳材料、纯无机微米-纳米结构材料以及单原子型电催化材料)的研究进展进行了简要介绍和讨论.最后,本综述对MOFs基氧电催化剂目前存在的挑战进行了简要分析;同时,也对这类氧电催化剂的通用设计准则以及未来发展方向进行了展望.尽管存在诸多挑战,MOFs始终被认为是极好的"平台"材料.充分利用它们将有利于开发高效且实用的非贵金属基氧电催化剂.  相似文献   

11.
随着人们环保意识的不断增强,社会对清洁能源的需求也日益增加.燃料电池具有效率高,燃料来源丰富,可直接将化学能转化成电能且污染小等优点,因而受到了广泛关注.然而,燃料电池的阴极氧还原反应(ORR)速率较慢,成为提高燃料电池整体效率的制约因素.因此,开发高性能的ORR催化剂,加快ORR反应速率具有非常重要的意义.目前,Pt基催化剂被认为是活性最好的商用ORR电催化剂.尽管此类催化剂具有较高的催化活性和良好的稳定性,但Pt的储量有限,价格高昂,抗燃料毒化性能差,限制了其大规模应用.近年来,为了减小Pt的用量,降低催化剂成本,人们除了致力于研究贵金属合金催化剂及非贵金属催化剂外,还把目光聚焦在了非金属催化剂,特别是碳及其复合材料的研究上.在众多碳材料中,碳球因具有良好的表面渗透性和较高的机械稳定性而被广泛应用于催化、吸附、药物输送和能量存储及转化等领域中.然而,碳球的表面化学惰性较强,比表面积较低,使其部分应用受到了限制.因此,人们采用了多种方法来调控碳球的物理化学性质.其中,向碳材料中掺入杂原子,尤其是氮原子的方法广受青睐.因为杂原子的掺入会显著增强作为主体的碳原子给电子的能力和表面吸附性质,从而对ORR表现出优异的催化活性和稳定性.本文以蔗糖作为碳源,三聚氰胺作为氮源,采用水热法及高温热解法制备了一系列氮掺杂的生物质碳球.并对氮掺杂量及热解温度进行了优化.结果表明,石墨化程度及石墨氮含量的提高,能有效地提高催化剂的活性.在优化了的条件下得到的催化剂N0.1C1.9S-900,表现出了比商业Pt/C催化剂更好的ORR催化性能.在0.1 mol/L KOH中,该催化剂催化ORR的起始电位和半波电位分别为–22.6和–133.6 mV(vs.Ag/AgCl),极限电流密度为4.6 mA/cm~2,分别比商业Pt/C高出7.2 mV,5.9 mV和0.2 mA/cm~2.同时,在经过30000 s的稳定性测试中,N0.1C1.9S-900催化剂的电流损失也远低于Pt/C,表明该催化剂具有良好的稳定性.此外,在抗甲醇毒化实验中,相比于商业Pt/C,N0.1C1.9S-900催化剂对甲醇有更好的耐受性.另外,该催化剂催化的ORR属于高效的4e~–途径.可见,该催化剂作为燃料电池的阴极氧还原反应催化剂具有广阔的前景.  相似文献   

12.
众所周知, 传统化石燃料的大量使用不仅导致严重的环境污染和温室效应, 而且化石能源本身也面临着枯竭的危机.所以, 探索全新的、环境友善的、可持续发展的能源载体一直备受国内外科研工作者的关注. 氢能是一种清洁的可再生能源, 是有潜力的化石能源替代品. 水分解是一种有效的、理想的产氢途径, 然而水氧化反应是多质子多电子传递的过程, 是制约整个水分解过程的瓶颈. 目前, 基于贵金属(铱和钌)分子和氧化物的电催化剂已经被报道很多, 并且可以保持很好的催化活性; 但是, 这一类催化剂差的稳定性、昂贵的价格和少的地壳含量等因素严重制约了其大规模实际应用. 因此, 开发基于非贵金属(钴、镍、铁、铜、锰)的新型电催化剂材料是解决该问题的唯一出路, 但要保证电催化剂的高活性和好的稳定性仍面临着诸多挑战.在众多的非贵金属中, 铜是一种来源广泛的金属, 而且铜对生物体毒性较小. 由于铜具有良好的配位化学和多重的氧化还原特性, 近年来, 很多基于铜的水氧化电催化剂被开发和研究.我们在含有1.0 mmol/L Cu2+和2.0 mmol/L Tris配体的磷酸缓冲溶液(0.2 mol/L, pH = 12.0)中, 采用1.15 V vs. NHE恒电位电沉积的方法, 在ITO导电玻璃上制备出基于铜的水氧化催化剂薄膜(Cu-tricine). 对得到的催化剂薄膜进行扫描电镜(SEM)测试, 该催化剂均匀负载在ITO表面, 厚度大约是1.4 μm. 为了更加深入研究Cu-Tricine催化剂薄膜, 采用透射电子显微镜(TEM)和X射线衍射(XRD)对Cu-tricine催化剂进行表征, 结果表明, 该催化剂薄膜是一种结晶度较差的无定形材料. 同时, 为了研究催化剂薄膜的元素组成及其所处状态, 对催化剂进行了能量散射X射线能谱(EDX)和X射线光电子能谱(XPS)测试, 结果表明, 该催化剂由铜和氧元素组成, 并且铜是以正二价存在. 由高分辨O 1s XPS谱图分析结果可以推测, Cu-Tricine催化剂可能是由氧化铜和氢氧化铜组成. Cu-tricine催化剂的水氧化活性是在0.2 mol/L的磷酸缓冲溶液(pH =12.0)中进行测试, 从塔菲尔曲线中可以得出, 该催化剂达到1.0 mA/cm2的催化电流密度所需的过电位是395 mV, 塔菲尔斜率为46.7 mV/decade. 此外, 在1.15 V vs. NHE的电位下, 在10 h的电解过程中, Cu-tricine催化剂薄膜可以将催化电流密度一直保持在7.5 mA/cm2, 并且得到的法拉第效率为99%.  相似文献   

13.
周省  覃佳艺  赵雪茹  杨静 《催化学报》2021,42(4):571-582,中插13-中插19
随着能源危机的日益严峻,能源的储存和转换越来越受到人们的重视.目前人们加以开发和利用的清洁能源主要包括太阳能、风能、氢能、地热能以及电化学能等.其中,燃料电池和金属-空气电池等作为电化学器件为电化学能的开发及可持续利用提供了条件.特别是金属-空气电池以电极电位较负的金属如镁、铝、锌、铁等作负极,以空气中的氧或纯氧作正极...  相似文献   

14.
In this paper,we synthesized cathode catalysts(PANI-PPYR,Fe/PANI-PPYR,Co/PANI-PPYR and Fe-Co/PANI-PPYR)with high performance oxygen reduction by using a simple heat treatment process.These catalysts were fabricated by directly calcining the Fe and/or Co doped polyaniline(PANI)-polypyrrole(PPYR)composites.Their electrocatalytic activity for ORR both in acidic and in alkaline media was investigated by voltammetric techniques.Among the prepared catalysts,Co/PANI-PPYR presents the most positive ORR onset potential of 0.62 V(vs.SCE)in 0.5 mol/L H2SO4 solution or?0.09 V(vs.SCE)in 1 mol/L NaOH solution.In addition,the Co/PANI-PPYR catalyst shows the largest limiting-diffusion current density for ORR,which is 4.3 mA/cm2@0.2 V(vs.SCE)in acidic and 2.3 mA/cm2@?0.3 V(vs.SCE)in alkaline media.In acidic media,a four-electron reaction of ORR on the Co/PANI-PPYR and Fe/PANI-PPYR catalysts is more dominant than a two-electron reaction.In alkaline media,however,a four-electron and a two-electron mechanisms are co-present for the ORR on all the prepared catalysts.Co/PANI-PPYR catalyst also presents good electrocatalytic activity stability for ORR both in acidic and in alkaline media.  相似文献   

15.
It is extremely desirable to explore high-efficient, affordable and robust oxygen electrocatalysts toward rechargeable Zn–air batteries (ZABs). A 3D porous nitrogen-doped graphene encapsulated metallic Ni3Fe alloy nanoparticles aerogel (Ni3Fe-GA1) was constructed through a facile hydrothermal assembly and calcination process. Benefiting from 3D porous configuration with great accessibility, high electrical conductivity, abundant active sites, optimal nitrogen content and strong electronic interactions at the Ni3Fe/N-doped graphene heterointerface, the obtained aerogel showed outstanding catalytic performance toward the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Specifically, it exhibited an overpotential of 239 mV to attain 10 mA cm−2 for OER, simultaneously providing a positive onset potential of 0.93 V within a half-wave potential of 0.8 V for ORR. Accordingly, when employed in the aqueous ZABs, Ni3Fe-GA1 achieved higher power density and superior reversibility than Pt/C−IrO2 catalyst, making it a potential candidate for rechargeable ZABs.  相似文献   

16.
以高含氮量的苯胺五聚体二羧酸为配体,在预氧化的泡沫镍上通过溶剂热反应合成了Fe,Co金属有机框架材料Fe/Co-MOF,再以Fe/Co-MOF为金属源和碳源,经磷化后制备出一种新型的双金属(Fe,Co)和杂原子(N,P)共掺杂的碳材料Fe/Co/P-NPs.通过扫描电子显微镜和高分辨透射电子显微镜表征发现,Fe/Co/P-NPs由纳米粒子和纳米片组成,并且形成Fe2P和Co2P两种晶体.电化学测试结果表明,Fe/Co/P-NPs在析氢、析氧及水电解中表现出了优异的多功能催化活性.在1 mol/L KOH中,Fe/Co/P-NPs在10和100m A/cm2电流密度时的析氧过电位分别为270和300 m V,均小于其它对比材料,优于负载在泡沫镍上的RuO2.作为水电解双功能催化剂,Fe/Co/P-NPs仅需1. 48 V的电位即可获得10 m A/cm2的电流密度.  相似文献   

17.
Silver nanoparticles(Ag NPs) were prepared by dealloying Mg-Ag alloy precursor. The obtained Ag NPs have an average ligament size of (50±10) nm. Electrocatalytic activity of Ag NPs towards oxygen reduction reaction(ORR) in 0.1 mol/L NaOH solution was assessed via cyclic voltammetry(CV), rotating ring disk elec-trode(RRDE) techniques, and electrochemical impedance spectroscopy(EIS). The electrochemical active area for the ORR was evaluated by means of the charge of the underpotential deposition(UPD) of lead(Pb) on Ag NPs. The CV results indicate that Ag NPs have a higher current density and more positive onset potential than the bulk Ag electrode. RRDE was employed to determine kinetic parameters for O2 reduction. Ag NPs exhibit a higher kinetic current density of 25.84 mA/cm2 and a rate constant of 5.45×10-2 cm/s at -0.35 V vs. Hg/HgO. The number of electrons(n) involved in ORR is close to 4. Further, EIS data show significantly low charge transfer resistances on the Ag NPs electrode. The results indicate that the prepared Ag NPs have a high activity and are promising catalyst for ORR in alkaline solution.  相似文献   

18.
首先制备了不同镍/铁比的镍铁水滑石, 并通过液相剥离法得到水滑石纳米薄片溶胶, 随后将其与还原氧化石墨烯复合, 并对其进行了电催化水氧化的性能测试. 结果表明, 镍铁水滑石的剥离可以大幅度提高其电催化性能, 起峰电位为1.47 V, 电流密度为10 mA/cm2 时, 电位仅为1.53 V; 与还原氧化石墨烯复合后, 其催化活性得到了进一步提高, 在10 mA/cm2时电位降为 1.515 V.  相似文献   

19.
在质子交换膜燃料电池中,金属铂是最高效的阴极氧还原催化剂之一,但是铂昂贵的价格严重阻碍了其在燃料电池领域中的大规模商业化应用.通过铂与3d过渡金属(Fe、Co和Ni)合金化可以有效提高催化剂的氧还原活性,然而在实际的高腐蚀性、高电压和高温的燃料电池运行环境中,铂合金纳米粒子易发生溶解、迁移和团聚,从而导致催化剂耐久性差.同时过渡金属离子的溶出会影响质子交换膜的质子传导,并且一些过渡金属离子会催化芬顿反应,产生高腐蚀性?OH自由基,加快Nafion和催化剂的劣化.与过渡金属掺杂相比,非金属掺杂具有明显优势:一方面,非金属溶出产生的阴离子不会取代Nafion中的质子,也不会催化芬顿反应;另一方面,与3d过渡金属相比,非金属具有更高的电负性,其掺杂很容易调节Pt的电子结构.因此,本文通过非金属磷掺杂合成具有优异稳定性的核壳结构PtPx@Pt/C氧还原催化剂.通过热处理磷化商业碳载铂形成磷化铂(PtP2),经由酸洗处理产生富铂壳层,即PtPx@Pt/C.X射线粉末多晶衍射结果证明了PtP2相的存在,并且进一步通过电子能量损失谱对纳米粒子进行微区面扫描分析以及X射线光电子能谱分析证实了富铂壳层的存在,壳层厚度约1 nm.得益于核壳结构及磷掺杂引起的电子结构效应,PtP1.4@Pt/C催化剂在0.90 V(RHE)时的面积活性(0.62 mA cm–2)与质量活性(0.31 mAμgPt–1)分别是商业Pt/C的2.8倍和2.1倍.更重要的是,在加速耐久性测试中,PtP1.4@Pt/C催化剂在30000圈电位循环后质量活性仅衰减6%,在90000圈电位循环后仅衰减25%;而商业Pt/C催化剂在30000圈电位循环后就衰减46%.PtP1.4@Pt/C催化剂高活性与高稳定性主要归功于核壳结构、磷掺杂引起的电子结构效应以及磷掺杂增加了碳载体对催化剂粒子的锚定作用进而阻止了其迁移团聚.综上所述,本文为设计同时具有优异活性与稳定性非金属掺杂Pt基氧还原催化剂提供新的思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号