首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
近年来,由有机配体保护的原子精确金属团簇在合成方面已取得了重要进展,其独特的原子结构对一些化学反应产生独特的催化效果.原子精确的团簇催化剂明显不同于纳米颗粒催化剂和单原子催化剂,是一种关联均相和多相的、原子数目确定、尺寸均一、结构精确的新型催化剂.从原子尺度上精确构筑团簇催化剂,探究亚纳米尺度的微观结构对催化性能的影响,为常规催化剂所未能解决的关键科学问题提供解决的机会,为在分子尺度上揭示催化作用机制以及准确关联催化剂结构与催化性能提供新的研究体系,具有重要的科学研究意义.本文设计和使用了三种结构精确的金团簇催化剂,即Au_(25)(PPh_3)_(10)(SC_2H_4Ph)_5Cl_2, Au_(38)(SC_2H_4Ph)_(24)和Au_(25)(SC_2H_4Ph)_(18),分别由二十面体结构的Au_(13)单元通过中心顶点融合、面融合、体相融合形成的(简写为Au_(vf)、Au_(ff)和Au_(bf)),详细研究了这三个金团簇催化剂在二十面体Au_(13)单元的结构融合过程中,其催化活性的演变规律.在催化吡咯烷与O_2反应制备γ-丁内酰胺反应中,金团簇催化剂的催化活性顺序为Au_(bf)Au_(ff)Au_(vf),表明这三个金团簇中Au_(13)单元的结构随着点、面、体的融合,其催化活性随之增加.同时研究发现,对于同一个Au团簇催化剂,其表面硫醇配体的烷基链越短,其催化活性越高,这主要是由于短链硫醇分子的空间位阻较小,吡咯烷分子更容易进入催化剂的金表面,接触到活性位点,进行催化反应.实验表明,三个团簇金原子均带正电荷,正价金物种可能是催化吡咯烷与O_2反应的催化活化物种.研究发现, Au_(bf)团簇表面的活性位数目高于Au_(ff)和Au_(vf)团簇的,因此Au_(bf)的催化活性最高;同时,团簇表面配体的烷基链越短,其表面活性位数目也越多,这也进一步解释了表面硫醇配体的烷基链越短,其相应的金团簇催化剂的催化活性越高的原因.吡咯烷与O_2在金团簇上反应的可能路径为O_2在Au活性位上裂解的O原子和吡咯烷β-H转移至Au活性位的β-H反应脱水后形成亚胺,亚胺经过水解进一步氧化得到产物.这项研究将为在原子层次上调变金属团簇催化剂的结构进而改变其催化性能提供新的思路,对精准设计和构筑高效催化剂具有一定的科学指导意义.  相似文献   

2.
庄志华  陈卫 《电化学》2021,27(2):125-143
金属纳米团簇(MNCs)是由几个到数百个金属原子组成,其尺寸一般小于2nm.金属纳米团簇在许多催化反应中表现出高的催化活性和选择性,这与金属纳米团簇具有高的比表面积、较多暴露的活性原子,以及与金属纳米粒子(MNPs)不同的电子结构有关.金属纳米团簇确定的组成和结构使其成为一种新型模型催化剂,对纳米团簇的催化性能研究有利...  相似文献   

3.
金属催化剂在工业、环境、能源以及生物等过程具有重要的应用.设计具有特定活性、环境友好型以及室温下具有反应活性的催化剂,需要在分子水平对金属催化剂的基元步骤,活性位点的结构以及催化反应微观机理有充分的认识.然而,由于宏观催化剂表面结构异常复杂,催化反应常受到溶剂、压力、金属颗粒团聚、催化剂表面缺陷等因素的干扰,利用现有实验仪器,从微观角度探索金属催化反应机理仍具有较大挑战,因此,对金属催化剂活性位的结构以及反应微观机理的认识还不十分清楚.质谱方法结合现代量子化学理论计算,提供了在气相条件下实验探索化学反应微观机理的有力工具,团簇反应可在隔离外界条件、可控以及可重复条件下进行,可以排除一些难以控制因素的干扰,可在化学键和分子结构水平认识金属活性位的结构以及催化反应的微观机理.气相金属团簇离子可用多种实验方法制备,与反应物分子反应后可利用多种质谱仪器探测,根据实验上所得的具有反应活性的团簇,结合现代量子化学理论模拟,得到金属催化反应的基元步骤以及微观反应机理信息,所得反应机理信息为宏观催化剂的设计提供重要理论研究基础.本综述总结了团簇实验上已经探测到的金属单原子离子、金属团簇、金属氧化物团簇和金属化合物催化的气相反应.反应物分子囊括了大量的无机和有机分子,包括CO,H2,CH4,C2H2,C2H4,C6H6,CH3OH,HCOOH,CH3COOH等.本综述主要介绍了以下三类催化反应:(1)CO催化氧化;(2)CH4催化转化;(3)催化脱羧反应,并重点关注贵金属单原子掺杂团簇独特的催化反应性.单原子催化剂可最大限度地利用有限的贵金属.在化学反应方面,单原子催化剂具有特异的反应活性,选择性以及稳定性.本综述对气相团簇反应中报道的两个重要的贵金属单原子掺杂团簇的催化反应进行了详细介绍:(1)金原子掺杂的AuAl3O3-5+团簇为首次报道的可以利用分子氧催化氧化CO的团簇单原子催化剂,我们对Au原子起催化作用的本质原因进行了介绍:(2)铂原子掺杂的PtAl3O5-7-团簇能利用分子氧催化氧化CO,该研究提出了"电负性阶梯"效应来解释Pt原子催化的微观机理,且此效应有望对大部分贵金属适用.此外,本综述对CO催化氧化反应和CH4催化转化反应的研究现状以及尚未解决的问题进行了剖析.相比CO的催化氧化反应,科学家对CH4催化转化反应机理的认识还不够深入,还需要进一步实验研究,而团簇单原子催化剂有望在此领域有所突破.  相似文献   

4.
金属催化剂在工业、环境、能源以及生物等过程具有重要的应用.设计具有特定活性、环境友好型以及室温下具有反应活性的催化剂,需要在分子水平对金属催化剂的基元步骤,活性位点的结构以及催化反应微观机理有充分的认识.然而,由于宏观催化剂表面结构异常复杂,催化反应常受到溶剂、压力、金属颗粒团聚、催化剂表面缺陷等因素的干扰,利用现有实验仪器,从微观角度探索金属催化反应机理仍具有较大挑战,因此,对金属催化剂活性位的结构以及反应微观机理的认识还不十分清楚.质谱方法结合现代量子化学理论计算,提供了在气相条件下实验探索化学反应微观机理的有力工具,团簇反应可在隔离外界条件、可控以及可重复条件下进行,可以排除一些难以控制因素的干扰,可在化学键和分子结构水平认识金属活性位的结构以及催化反应的微观机理.气相金属团簇离子可用多种实验方法制备,与反应物分子反应后可利用多种质谱仪器探测,根据实验上所得的具有反应活性的团簇,结合现代量子化学理论模拟,得到金属催化反应的基元步骤以及微观反应机理信息,所得反应机理信息为宏观催化剂的设计提供重要理论研究基础.本综述总结了团簇实验上已经探测到的金属单原子离子、金属团簇、金属氧化物团簇和金属化合物催化的气相反应.反应物分子囊括了大量的无机和有机分子,包括CO,H_2,CH_4,C_2H_2,C_2H_4,C_6H_6,CH_3OH,HCOOH,CH_3COOH等.本综述主要介绍了以下三类催化反应:(1)CO催化氧化;(2)CH4催化转化;(3)催化脱羧反应,并重点关注贵金属单原子掺杂团簇独特的催化反应性.单原子催化剂可最大限度地利用有限的贵金属.在化学反应方面,单原子催化剂具有特异的反应活性,选择性以及稳定性.本综述对气相团簇反应中报道的两个重要的贵金属单原子掺杂团簇的催化反应进行了详细介绍:(1)金原子掺杂的Au Al_3O_(3-5)~+团簇为首次报道的可以利用分子氧催化氧化CO的团簇单原子催化剂,我们对Au原子起催化作用的本质原因进行了介绍:(2)铂原子掺杂的Pt Al_3O_(5-7)~-团簇能利用分子氧催化氧化CO,该研究提出了"电负性阶梯"效应来解释Pt原子催化的微观机理,且此效应有望对大部分贵金属适用.此外,本综述对CO催化氧化反应和CH_4催化转化反应的研究现状以及尚未解决的问题进行了剖析.相比CO的催化氧化反应,科学家对CH4催化转化反应机理的认识还不够深入,还需要进一步实验研究,而团簇单原子催化剂有望在此领域有所突破.  相似文献   

5.
硫醇配体保护的高核银纳米团簇具有丰富的结构和性能, 在光致发光、 生物传感、 纳米材料等方面具有广阔的应用前景. 然而, 精确控制高核Ag/S纳米团簇的尺寸和结构面临着巨大的挑战, 构建高核Ag/S纳米团簇的可行策略也一直是人们关注的焦点. 近年来, 随着合成方法和表征技术的不断发展, 高核Ag/S纳米团簇的合成和性能研究方面均取得了显著的成就. 本文总结了含20个或以上Ag原子的Ag/S纳米团簇的合成方法(直接还原法、 阴离子模板法及配体交换法), 对部分高核Ag/S纳米团簇的结构进行了探讨, 并展望了未来研究的趋势.  相似文献   

6.
刘凯梵  李宗军  陈卫 《分析化学》2022,50(4):593-601
通过电化学催化过程将二氧化碳(CO2)还原为有用的燃料和化学品是目前降低CO2排放量以及高效利用CO2的主要方式之一.金纳米团簇(Au NCs)因其结构明确、原子级尺寸精确和高表面活性而被认为是CO2电化学还原反应(CO2RR)的良好催化材料和模型催化剂.本研究可控合成了两种金纳米团簇Au24 NCs和Au25 NCs...  相似文献   

7.
异金属原子引入原子精确的金属纳米团簇是调控团簇物理化学性质的有效手段,目前报道的异金属原子掺杂团簇大多数是单个金属原子掺入金属团簇中形成的二元金属纳米团簇,而两个异金属原子同时掺入同一个金属团簇中形成三元金属纳米团簇的报道较少.本工作中,我们报道了Pd和Hg双原子同时掺入Au25(PET)18(PET=苯乙硫醇)团簇中形成HgPdAu23(PET)18新团簇,推测了Pd和Hg在三元金属团簇中最可能的位置,即Pd位于三元金属团簇的内核中心,而Hg原子位于三元金属团簇内核的表面.不同金属种类以及不同的掺杂位置导致了三元金属团簇HgPdAu23(PET)18具有不同于原始团簇Au25(PET)18和二元金属团簇PdAu24(PET)18和HgAu24(PET)18的电子构型.本研究为双金属异原子掺入金属纳米团簇的精准制备提供了新的思...  相似文献   

8.
<正>近年来原子精确的金属纳米团簇引起广泛关注,对其结构的调控也成为研究热点~(1–10)。金属纳米团簇结构的调控至少可从三个方面入手:团簇整体结构、团簇局部结构、团簇在晶体中的排列结构。着眼于团簇的组成不变而改变结构,可获得金属纳米团簇的构造同分异构体~1;着眼于团簇在晶体中的排列结构调控,近来一种新的最密排列方式6HLH排列被发现~2。由于金属纳米团簇可  相似文献   

9.
正金纳米团簇具有确定的组成和结构,作为模型化合物有助于理解物质结构与性能之间的关系。量子尺寸效应使金纳米团簇具有一些特殊的物理化学性质,因此在催化、生物、传感、光电等方面具有广泛的应用价值~(1,2)。目前国际上报道的结构确定的金纳米团簇主要包括硫醇、膦配体、炔配体以及混合配体保护的金纳米团簇~(3–7)。这些金纳米团簇可以作为模型催化剂来研究催化剂的结构与性能关  相似文献   

10.
Zhikun WU 《物理化学学报》2017,33(10):1930-1931
正近年来在纳米科学研究中,金属纳米团簇(metal nanoclusters,超细的金属纳米粒子,尺寸约1-3 nm)这一领域逐渐兴起并引起了研究者们的广泛关注~(1,2)。与尺寸更大且多分散的纳米粒子相比,纳米团簇取得了原子尺度上的精确,具有确定的分子式和X射线单晶结构~(3,4)。因此,研究纳米团簇使得人们可以从根本上理解一些纳米结构与性能的关系~(1-3),以及跟踪纳米世界里的某些  相似文献   

11.
<正> The reduction of mixtures of mononuclear Au(I)and Ag(I) phosphine halide complexes with sodium,boronhydride in different solvents gave rise to two types of 25-atom clusters,and 37-atom and 38-atom clusters. These clusters were formed by vertex-sharing of Au-centered icosahedral cluster units (Au7Ag6). The nuclearity of these clusters is given by (13n-e) , where n is the number of the cluster units and e is the edges of the polyhedron formed by centers of the icosahedral cluster units . The structures of these novel 25-atom,37-atom and 38-atom clusters can be described as two icosahedra sharing one vertex (2×13-1 = 25)or three icosahedra sharing three vertices in a triangle(3×13-3 = 36)plus capping atom(s).  相似文献   

12.
The total structure determination of thiol-protected Au clusters has long been a major issue in cluster research. Herein, we report an unusual single crystal structure of a 25-gold-atom cluster (1.27 nm diameter, surface-to-surface distance) protected by eighteen phenylethanethiol ligands. The Au25 cluster features a centered icosahedral Au13 core capped by twelve gold atoms that are situated in six pairs around the three mutually perpendicular 2-fold axes of the icosahedron. The thiolate ligands bind to the Au25 core in an exclusive bridging mode. This highly symmetric structure is distinctly different from recent predictions of density functional theory, and it also violates the empirical golden rule "cluster of clusters", which would predict a biicosahedral structure via vertex sharing of two icosahedral M13 building blocks as previously established in various 25-atom metal clusters protected by phosphine ligands. These results point to the importance of the ligand-gold core interactions. The Au25(SR)18 clusters exhibit multiple molecular-like absorption bands, and we find the results are in good correspondence with time-dependent density functional theory calculations for the observed structure.  相似文献   

13.
The lowest-energy structure of thiolate-group-protected Au38(SR)24 is with ab initio computations. A unique bi-isocahedral Au23 core is predicted for the Au38(SR)24 cluster, consistent with recent experimental and theoretical confirmation of the icosahedral Au13 core for the [Au25(SR)18]- cluster. The computed optical absorption spectrum and X-ray diffraction pattern are in good agreement with experimental measurements. Like the "magic-number" cluster [Au25(SR)18]-, the high stability and selectivity of the magic-number Au38(SR)24 cluster is attributed to high structural compatibility between the bi-isocahedral Au23 core and the 18 exterior staple motifs.  相似文献   

14.
了解金属纳米团簇的形成机制对于进一步发展其化学制备方法是必要的。我们利用盐酸(HCl)和十二硫醇(RSH)共同刻蚀L3 (L3: 1, 3-双二苯基膦丙烷)包覆的多分散性的Aun (15 ≤ n ≤ 60)团簇成功制备出单分散性的Au13(L3)2(SR)4Cl4纳米团簇,并结合原位同步辐射X射线吸收谱、原位真空紫外-可见吸收光谱和质谱技术,研究了Au13(L3)2(SR)4Cl4纳米团簇的动力学形成过程。结果表明,Au团簇从多分散到单分散的转变经历了3个明显不同的动力学步骤。首先,尺寸较大的多分散金属团簇Aun主要在HCl刻蚀作用下,形成尺寸较小的亚稳的中间产物Au8–Au11团簇。然后,这些中间产物与反应溶液中已有的Au(Ⅰ)-Cl物种反应,并与SR发生部分配体交换,逐渐长大为由SR和L3保护的Au13团簇。最后,形成的Au13团簇经过一个较缓慢的结构重组过程,最终形成稳定的Au13(L3)2(SR)4Cl4的纳米团簇。  相似文献   

15.
A novel phosphine-protected Au(20) nanocluster was isolated through the reduction of Au(PPhpy(2))Cl by NaBH(4) (PPhpy(2) = bis(2-pyridyl)-phenylphosphine). Its composition was determined to be [Au(20)(PPhpy(2))(10)Cl(4)]Cl(2), and single crystal X-ray structural analysis revealed that the Au(20) core can be viewed as being generated from the fusion of two Au(11) clusters via sharing two vertices. Optical absorption spectroscopy indicated this Au(20) has a large HOMO-LUMO gap (E(g) ≈ 2.24 eV). This is the first example of a ligand-protected gold nanocluster with a core generated from incomplete icosahedral Au(11) building units.  相似文献   

16.
In this work,we describe two synthetic procedures for preparing palladium doped 25-atom nanoclusters (referred to as Pd1Au24(SR)18,where ― SR represents thiolate,R=C2H4Ph).Pure Pd1Au24(SC2H4Ph)18 nanoclusters are isolated by solvent extraction and size exclusion chromatography.Mass spectrometry and optical spectroscopy analyses demonstrate that the Pd1Au24(SC2H4Ph)18 nanocluster adopts the same core-shell structure as that of the homogold Au25(SC2H4Ph)18 nanocluster,that is,a Pd-or Au-centered icosahedron surrounded by six Au2(SR)3 "staple"-like motifs.Similar doping behavior has also been observed in 38-atom M38(SR)24 (M:metal) nanoclusters,indicating the unique behavior of Pd dopant being preferentially located in the icosahedral center.The catalytic activity of Pd1Au24(SC2H4Ph)18 has also been evaluated for the selective hydrogenation of α,β-unsaturated ketone (e.g.,benzalacetone) to α,β-unsaturated alcohol,and a 42% conversion of benzalacetone is attained.  相似文献   

17.
The adsorption of silver and gold atoms, and M2, M6, and M13 (M=Ag or Au) clusters on the (0001) graphite surface has been investigated computationally using the density functional theory (DFT) with periodic boundary conditions and plane wave basis functions. The surface has been modeled as a single carbon sheet. The role of dispersion forces has been studied with an empirical classical model. The results show that the clusters avoid hollow sites on the graphite surface, and that the metal atoms favor atop and bond sites. Large structural changes are observed in octahedral M6 and icosahedral M13 clusters on the graphite surface when compared with gas-phase geometries. The results also indicate that if accurate results are required, the dispersion forces between metal and carbon atoms should be included in the studied systems.  相似文献   

18.
The structural stability and physical properties have been studied for carbon-(silicon-) doped La(13) clusters using DMOL method based on density-functional theory. Doped La(13) clusters prefer to be icosahedron. Substitutional doping with a carbon or silicon impurity makes some clusters closed electronic shell, especially in icosahedral isomers. Substitutional doping of icosahedral La(13) clusters is found to be favorable at surface sites of clusters, especially for Si-doped La(13) cluster, which is very likely to be formed during the doping process. In addition, the structural distortions due to the doping are discussed.  相似文献   

19.
Using density functional calculations, we demonstrate a catalytic reaction path with activation barriers of less than 0.5 eV for CO oxidation on the neutral and unsupported icosahedral nanoclusters of Au(55), Ag(55), and Au(25)Ag(30). Both CO and O(2) adsorb more strongly on these clusters than on the corresponding bulk surfaces. The reaction path consists of an intermediate involving OOCO complex through which the coadsorption energy of CO and O(2) on these clusters is expected to play an important role in the reaction. Based on the studies for the Au and Ag nanoclusters, a model alloy nanocluster of Au(25)Ag(30) was designed to provide a larger coadsorption energy for CO and O(2) and was anticipated to be a better catalyst for CO oxidation from energetic analysis.  相似文献   

20.
Molecular dynamics simulations in conjunction with MEAM potential models have been used to study the melting and freezing behavior and structural properties of both supported and unsupported Au nanoclusters within a size range of 2 to 5 nm. In contrast to results from previous simulations regarding the melting of free Au nanoclusters, we observed a structural transformation from the initial FCC configuration to an icosahedral structure at elevated temperatures followed by a transition to a quasimolten state in the vicinity of the melting point. During the freezing of Au liquid clusters, the quasimolten state reappeared in the vicinity of the freezing point, playing the role of a transitional region between the liquid and solid phases. In essence, the melting and freezing processes involved the same structural changes which may suggest that the formation of icosahedral structures at high temperatures is intrinsic to the thermodynamics of the clusters, rather than reflecting a kinetic phenomenon. When Au nanoclusters were deposited on a silica surface, they transformed into icosahedral structures at high temperatures, slightly deformed due to stress arising from the Au-silica interface. Unlike free Au nanoclusters, an icosahedral solid-liquid coexistence state was found in the vicinity of the melting point, where the cluster consisted of coexisting solid and liquid fractions but retained an icosahedral shape at all times. These results demonstrated that the structural stability in the structures of small Au nanoclusters can be enhanced through interaction with the substrate. Supported Au nanoclusters demonstrated a structural transformation from decahedral to icosahedral motifs during Au island growth, in contrast to the predictions of the minimum-energy growth sequence: icosahedral structures appear first at very small cluster sizes, followed by decahedral structures, and finally FCC structures recovered at very large cluster sizes. The simulations also showed that island shapes are strongly influenced by the substrate, more specifically, the structural characteristic of a Au island is not only a function of size, but also depends on the contact area with the surface, which is controlled by the wetting of the cluster to the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号