首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Scale-up of high shear granulation based on the internal stress measurement   总被引:1,自引:0,他引:1  
Scale-up of wet granulation in a vertical high shear mixer was conducted. Pharmaceutical excipient powders composed of lactose, cornstarch and micro-crystallinecellulose, and hydroxypropylcellulose as a binder were mixed together and then granulated with purified water under various operating conditions and vessel scales. A novel internal stress measurement system was developed and stress of normal and tangential directions that granules received from the agitator blade during the granulation was continuously measured. The results indicated that granules received stress mainly from the tangential direction, which also showed the largest value near at the vessel wall. The effects of the agitator tip speed and the centrifugal acceleration on the measured stress was investigated. It was found that the tip speed of the agitator blade could be the main factor for the granule growth. The physical properties such as strength, size distribution and compressibility of granules prepared by changing the operating conditions and the vessel scales were evaluated and the scale-up characteristics of high shear granulation were investigated experimentally. The results showed that these physical properties had linear correlations with the tip speed. It was finally concluded that the scale-up of high shear granulation could be well conducted by means of the tip speed of the agitator blade.  相似文献   

2.
A newly developed mini-scale high shear granulator was used for scale-up study of wet granulation process from 0.2 to 200 L scales. Under various operation conditions and granulation bowl sizes, powder mixture composed of anhydrous caffeine, D-mannitol, dibasic calcium phosphate, pregelatinized starch and corn starch was granulated by adding water. The granules were tabletted, and disintegration time and hardness of the tablets were evaluated to seek correlations of granulation conditions and tablet properties. As the granulation proceeded, disintegration time was prolonged and hardness decreased. When granulation processes were operated under the condition that agitator tip speed was the same, similar relationship between granulation time and tablet properties, such as disintegration time and hardness, between 0.2 L and 11 L scales were observed. Likewise, between 11 L and 200 L scales similar relationship was observed when operated under the condition that the force to the granulation mass was the same. From the above results, the mini-scale high shear granulator should be useful tool to predict operation conditions of large-scale granulation from its mini-scale operation conditions, where similar tablet properties should be obtained.  相似文献   

3.
A novel multi-functional vertical high shear kneader has been developed and its performance in wet kneading has previously been reported [Watano et al., Chem. Pharm. Bull., 50(3), 341-345 (2002)]. In this study, scale-up of wet kneading in the novel vertical high shear kneader was conducted. Pharmaceutical excipients composed of lactose, cornstarch and micro-crystalline cellulose were used as powder samples. Kneading operations were conducted under various operating conditions and three different vessel scales. The dried pellets were then prepared by extruding the wet kneaded masses through a dome-type extruder and their drying by a fluidized bed. The physical properties such as strength and disintegration time of the dried pellets were evaluated. It was found that the properties of the dried pellets and their scale-up characteristics were well expressed by an agitation power per unit vessel volume and dimensionless Froude number.  相似文献   

4.
This study compared the granulation processes for different formulations using a laboratory-scale high shear mixer. The effects of critical process parameters (impeller speed, chopper speed and kneading time) on granule characteristics were evaluated. The characteristics of the granules studied included the size distribution, friability and morphological properties. The flow profiles of the wet mass and material deposition during the process were also studied. The results obtained showed that the effect of the impeller speed was determined by the starting material system. On the other hand, chopper speeds from 1200 to 3600 rpm and kneading times from 120 to 240 s had a consistent influence on all formulations. Moreover, it was found that the toroidal flow pattern of the wet mass could be maintained for a longer period and granules with a good spherical shape were obtained by removing the chopper during the last 120 s of the granulation process. In addition, the use of the pregelatinized starch in the formulation also led to a reduction in the wall adhesion of the material. It was concluded that the effectiveness of high shear wet granulation could be improved by choosing a proper combination of starting material and process parameters and by monitoring the mass motion during the process.  相似文献   

5.
A novel system has been developed to continuously monitor granule growth in a high shear granulation. The system consists of an image processing system and a particle image probe comprising a CCD camera, lighting unit and air purge system. Segregation during powder mixing was investigated experimentally and the optimal positioning of the probe was determined. High shear granulation was conducted using pharmaceutical powders, and granule size and product's yield of various size ranges were continuously measured by the developed system. Sieve analysis of the granulated products sampled out during the granulation was simultaneously conducted, and the obtained data was compared with that by the on-line image processing system. An extremely close relationship could be found between both data, proving that the developed system could monitor the granule growth accurately and continuously throughout the granulation. An on-off control system was developed to control the granulation process, and the performance of the system was confirmed.  相似文献   

6.
The vortex wave technique enhances microfiltration performance by combining the mixing characteristics of oscillatory flow and flow deflectors. The ability to reproduce these highly convective mixing patterns on a scale applicable to pilot plant studies has been investigated in this paper. The scale-up of a single channel membrane unit (18200 mm2) to a double channel element (106080 mm2) has been investigated in terms of geometric, kinematic and dynamic similarity. A non-dimensional approach has been adopted, wherever possible, to characterise the performance of both microfilters. The kinetics of each system are dominated by the Reynolds number, and the dynamics have been classified in terms of a new non-dimensional number — the power ratio. The power ratio has been employed to predict accurately the performance of the scaled-up filter, and also to provide an indication of transitional flow patterns. The inhibition of a gel-layer within the vortex wave modules has been demonstrated by the non-linear relationship between flux and transmembrane pressure. Experimental results and a theory which includes the effects of osmotic-pressure show that the flux is directly proportional to the cube root of the transmembrane pressure. Non-dimensional analysis of the experimental results indicates a similar trend, whereby the flux is directly proportional to the cube root of power dissipation under two-dimensional, laminar flow conditions.  相似文献   

7.
《印度化学会志》2021,98(3):100042
The effects of three structural parameters on flow field and power consumption of in-line high shear mixer (HSM) were investigated by large eddy simulation (LES). In addition, an artificial neural network (ANN) is used to predict the relationship between the structural parameters and the power consumption, and the effect of dimensionless structural parameters on the power number constant Poz and k1 is studied. The results show that the stator tooth thickness and the tooth tip-base distance have a slight effect on the flow field, and the shear gap width is a key parameter affecting the flow field. As the stator teeth thickness, the tooth tip-base distance and the shearing gap width increases, the power number Po decreases. There is a linear relationship between the constant k1 and the dimensionless structural parameters. With the increase of the dimensionless parameter Ts/Ds-o of the stator tooth thickness, the dimensionless parameter St/H of the tooth tip-base distance, and the dimensionless parameter Sg/DR-o of the shear gap width, the constant k1 decreases. With the increase of the parameter St/H, Sg/DR-o and Ts/Ds-o, the constant Poz first increases and then decreases. There is a linear relationship between the constant Poz and the parameter Ts/h. With the increase of the parameter Ts/h, the constant Poz increases.  相似文献   

8.
One of the most essential problems in dealing with solid-liquid suspensions in stirred vessels is the determination of a reliable scale-up rule from small stirred tanks to large vessels on an industrial production scale. According to a new approach based on physical modelling of the complex fluid dynamics, the necessary power input in stirred suspensions can be calculated as a sum of the circulation power and the sinking power of a particle swarm. The following results, which are compared with a great variety of experimental data in the literature, reveal that there is no simple and constant scale-up rule applicable to describe the power input for a large range of suspension properties, tank size, geometrical conditions or comparable suspension criteria.  相似文献   

9.
Methods to prepare fractions of poly(epsilon-caprolactone) with a narrow molecular mass distribution in large quantities have been examined using high osmotic pressure chromatography under the theta condition. Effects of column dimension and coupling columns in series on the separation resolution were studied. We found that use of a thicker column can improve the resolution if adverse effects of viscous fingering are avoided. We also demonstrated that coupling the columns results in a better separation if the second column does not adsorb high-molecular-mass components purified in the first column.  相似文献   

10.
The scale-up of batch kinetic models was studied by examining the kinetic fitting results of batch esterification reactions completed in 75 mL and 5 L reactors. Different temperatures, amounts of catalysts, and amounts of initial starting reagents were used to completely characterize the reaction. A custom written Matlab toolbox called GUIPRO was used to fit first-principles kinetic models directly to in-line NIR and Raman spectroscopic data. Second-order kinetic models provided calibration-free estimates of kinetic and thermodynamic reaction parameters, time dependent concentration profiles, and pure component spectra of reagents and product. The estimated kinetic and thermodynamic parameters showed good agreement between small-scale and large-scale reactions. The accuracy of pure component spectra estimates was validated by comparison to collected NIR and Raman pure component spectra. The model estimated product concentrations were also validated by comparison to concentrations measured by off-line GC analysis. Based on the good agreement between kinetic and thermodynamic parameters and comparison between actual and estimated concentration and spectral profiles, it was concluded that the scale-up of batch kinetic models was successful.  相似文献   

11.
G. Derfel 《Liquid crystals》1989,6(6):709-716
The low stress shear flow alignment of a nematic liquid crystal in the presence of strong anchoring at the boundaries is analysed. Layers with pretilted director orientation are taken into account. Two kinds of symmetric deformations are assumed. They differ in the director distribution in the vicinity of the boundaries. The analysis is carried out using an expansion of the free energy of the layer in powers of the maximum deformation angle. The results have qualitative character. The condition for the threshold behaviour and the stability of the solutions are discussed. The deformation may develop continuously or discontinuously. The transition between two kinds of deformation is predicted. The facts already known are confirmed and supplemented.  相似文献   

12.
A new model is presented for describing the time-dependent flow of entangled polymer liquids at high shear rates. The results were obtained by extending the Doi and Edwards theory to include the effect of chain stretching. This nonlinear phenomenon is predicted to occur when the product of the shear rate and longitudinal relaxation time of the polymer exceeds one. If a constant-shear-rate flow is started under these conditions, it is shown that the shear stress and the normal stress are considerably larger than that predicted by the original reptation model. We also find that both of these stresses can pass through maxima before reaching a steady state and that the times required to reach these maxima are constants independent of the shear rate. In general the new model requires the numerical solution of coupled partial differential equations. However, at the highest shear rates where reptative relaxation is no longer important, an analytical solution for the stresses is found. The results obtained here are shown to agree well with experimental data and to be an improvement over a simpler model recently proposed.  相似文献   

13.
Shear viscosities of supercritical oxygen have been measured up to a pressure of 5.7 GPa at 294 K. A modified free-volume expression fits the data within 6% between the limits of the tenuous gas and 4.8 times the critical density. Nitrogen viscosities were found to correspond to those of oxygen through a simple scaling by critical constants. Viscosities were measured in the high-pressure diamond-anvil cell with a rolling-ball technique. The dynamics of a sphere rolling on an inclined plane were investigated in the context of these experiments. The effect of a second surface, situated above the sphere, was experimentally determined.  相似文献   

14.
This paper demonstrates a way to utilize the rheological properties of high consistency microfibrillated and nanofibrillated cellulose (MFC and NFC) based furnishes for improved dewatering. This is relevant to a new manufacturing platform that is being developed to form composite webs from suitable mixtures of MFC or NFC, traditional pulp fibres and pigments. The studied furnishes were evaluated in the consistencies range of 5–15 % with an MCR 300 rheometer and an immobilization cell. This setup enables us to characterize the rheology of the samples before and during the dewatering process. Classical rheological methods are used to characterise MFC and NFC furnishes. Yield stress as an indicator of the flocculated network strength was found to increase with the consistencies, following the increase in elastic moduli, which indicated a gel-like strongly flocculated matrix. The shear thinning properties of furnishes are observed to follow the Oswald’s rheological model on a wide range of shear rates. It was found that when the MFC and NFC furnishes were dewatered under vacuum conditions, the final solids content was increased with application of shear. This behaviour is more pronounced for furnishes which contained the more swollen NFC (higher WRV, i.e. higher zeta potential). This effect is further exemplified by the change of the complex and dynamic viscosities during the dewatering. The shear rate, the fibre content, and the furnish consistencies were also found to influence the dewatering rate.  相似文献   

15.
Physicochemical foundations of the granulation process of NPK fertilizers were studied. The effect of the composition of the starting components, type and amount of a binder, amount of the recycle, presence of a reinforcing additive in the mixture, temperature, and granulation duration on the yield and strength of the granulate was examined. The optimal parameters of the granulation of NPK fertilizers based on ammonium sulfate were determined.  相似文献   

16.
Overshoot of shear stress, σ, and the first normal stress difference, N1, in shear flow were investigated for polystyrene solutions. The magnitudes of shear corresponding to these stresses, γσm and γNm, for entangled as well as nonentangled solutions were universal functions of γ˙τeq, respectively, and γNm was approximately equal to 2γσm at any rate of shear, γ˙. Here τeq = τR for nonentangled systems and τeq = 2τR for entangled systems, where τR is the longest Rouse relaxation time evaluated from the dynamic viscoelasticity at high frequencies. Only concentrated solutions exhibited stress overshoot at low reduced rates of shear, γ˙τeq < 1. The behavior at very low rates, γ˙τeq < 0.2, was consistent with the Doi–Edwards tube model theory for entangled polymers. At high rates, γ˙τeq > 1, γσm and γNm were approximately proportional to γ˙τeq. At very high rates of shear, the peak of σ is located at t = τR, possibly indicating that the polymer chain shrinks with a characteristic time τR in dilute solutions. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1917–1925, 2000  相似文献   

17.
The setting up process in a nanoscale bearing has been modeled by molecular dynamics simulation. Contrary to the prediction from the classical Reynolds' theory, simulation results show that the load capacity of the nanoscale bearing does not increase monotonically with the operation speed. This is attributed to the change of the local shear rate, which will decrease with the shear velocity of the bearing as the shear velocity exceeds a critical value, i.e., the local shear rate has an upper limit. A simple nonlinear dynamic model indicates that the momentum exchange between the liquid and the solid wall is reduced with the shear velocity when the shear velocity is above a critical value. The weak momentum exchange results in a decrease of the local shear rate, which in turn causes a sharp increase of the slip length.  相似文献   

18.
This paper presents the rheological properties of wood-polymer composites (WPC) with a polypropylene (PP) matrix in the corrected shear rate range from approx. 20 s−1 to 150 000 s−1. Tests were conducted using a capillary rheometer and a rheological head of the author's construction, for which the working element is a thermoplastic injection moulding machine. The constructed tool was found to be very useful, especially for the determination of the processing characteristics of WPC composites containing a large particle-size filler. It was observed that the rheological properties of wood-polymer composites in the shear rate range of up to several thousand s−1 significantly depended on the filler content of the polymer matrix; at the same time, at higher shear rate, a clear decrease in the effect of the wood filler content on the viscosity of the composites and on the flow behaviour, as described by the power law, took place.  相似文献   

19.
A laboratory-scale microbubble dispersion (MBD) generator was shown to improve oxygen transfer to aerobic microorganisms when coupled to the conventional air-sparger. However, the process was not demonstrated on a large scale to prove its practical application. We investigated the scale-up of a spinning-disk MBD generator for the aerobic fermentation of Saccharomyces cerevisiae (baker’s yeast). A 1-L spinning-disk MBD generator was used to supply air for 1- and 50-L working volume fermentation of baker’s yeast. For the two levels investigated, the MBD generator maintained an adequate supply of surfactant-stabilized air microbubbles to the microorganisms at a relatively low agitation rate (150 rpm). There was a significant improvement in oxygen transfer to the microorganism relative to the conventional sparger. The volumetric mass transfer coefficient, k L a, for the MBD system at 150 rpm was 765 h−1 compared to 937 h−1 for the conventional sparger at 500 rpm. It is plausible to surmise that fermentation using larger working volumes may further improve the k L a values and the dissolved oxygen (DO) levels because of longer hold-up times and, consequently, improve cell growth. There was no statistically significant difference between the cell mass yield on substrate (0.43 g/g) under the MBD regime at an agitation rate of 150 rpm and that achieved for the conventional air-sparged system (0.53 g/g) at an agitation rate of 500 rpm. The total power consumption per unit volume of broth in the 50-L conventional air-sparged system was threefold that for the MBD unit for a similar product yield. Practical application of the MBD technology can be expected to reduce power consumption and therefore operating costs for aerobic fermentation.  相似文献   

20.
All sugar-coated tablets of chlorpromazine hydrochloride except for those produced by one manufacture showed concave dissolution profiles in water by paddle method at 100 rpm but not at 50 rpm. The study was undertaken to clarify the agitation-dependent abnormal dissolutions. The strange dissolutions were also observed in water at different ionic strengths but not in buffer solutions of pH 1.2, 4.0 and 6.8. When monitored, the pH's of water in dissolution vessels for the abnormal tablets increased with time at 100 rpm and some of them exceeded pH 8 but did not at 50 rpm. The solubility of chlorpromazine hydrochloride decreased with the increase of pH which was too low to dissolve the whole amount of drug contained in a tablet at pH 8. The elevation of pH seemed to be mainly brought about by dissolution of calcium carbonate popularly used for sugar-coated tablets, because larger amount of calcium ion was dissolved out from the abnormal tablets at 100 rpm than from a normal tablet and from them at 50 rpm. These findings indicate that the concave dissolution profiles should be caused by the decrease of drug solubility with increase in pH of water, probably because of dissolution of calcium carbonate. We should pay attention to the change in pH of water which may differ depending on the agitation speed of dissolution tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号