首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
光学纯手性胺是一类非常重要的手性化学品,作为手性砌块和手性拆分剂广泛用于医药、农业化学品、精细化学品等产品的合成中.据统计,美国FDA近年来批准的约40%药物中都含有一个或多个手性胺结构单元.胺脱氢酶(AmDH)是由氨基酸脱氢酶改造而来的一类催化酮不对称还原胺化的新酶,其在手性胺的合成中展现出较强的潜力,已引起国内外学术界和工业界的广泛关注.这是因为该酶能够利用廉价的无机铵为胺供体,且具有催化效率高、原子经济性好和环境友好等优点.迄今为止已经有数个高效的胺脱氢酶被成功开发和报道,但是这些通过蛋白质工程改造的胺脱氢酶均为(R)-选择性,因此只能合成(R)-选择性的手性胺,遗憾的是还未见有(S)-选择性胺脱氢酶的报道.因此,本文主要目的是期望从自然环境中鉴定能够不对称还原胺化酮合成(S)-手性胺的微生物,进而从中分离得到能够以无机铵作为胺供体合成(S)-手性胺的(S)-选择性酶.本文首先利用苯乙胺作为唯一氮源,从土壤中筛选能够利用苯乙胺生长的菌株,进而利用苯乙酮作为初筛底物对得到的菌株进行胺化能力筛选,再利用(4-氟苯基)丙酮作为模式底物进行进一步的筛选.幸运的是,我们获得了能够利用无机铵作为胺供体催化(4-氟苯基)丙酮不对称还原胺化合成(S)-4-氟-α-甲基苯乙胺的菌株,经过16S RNA鉴定为表皮短杆菌,命名为B.epidermidis ECU1015.接下来,我们对B.epidermidis ECU1015催化的胺化反应中的关键参数如胺基供体及其最适浓度、反应温度、pH值和底物浓度等进行了优化,确定最佳反应条件:胺供体为NH_4Cl(1.25 mol/L),反应温度为30℃,KPB缓冲液(200 mmol/L,pH7.5),底物浓度10 mmol/L.最后,在最适的反应条件下,我们对B.epidermidis ECU1015催化的底物谱进行了研究.结果表明,该微生物不能催化大位阻芳香酮和链状酮的胺化,对位阻较小的苯乙酮及(4-氟苯基)丙酮具有较好的还原胺化能力,而且对苯环上带有吸电子取代基的酮化合物具有更好的转化效果.经手性分析,所有生成的手性胺均为(S)-构型,产品的光学纯度均99%.B.epidermidis催化酮不对称胺化所形成的产物构型均为(S)-选择性,这不同于已报道的(R)-选择性胺脱氢酶.该菌株的发现为(S)-选择性胺脱氢酶的进一步鉴定奠定了一定的研究基础,相关蛋白的分离纯化工作正在进行.  相似文献   

2.
新型手性配体的设计合成是不对称催化研究的重要内容,其中手性胺膦配体因同时含有"软"的磷原子和"硬"的氮原子而具有丰富的配位化学性能和优秀的不对称诱导能力.本文总结了本研究组最近设计合成的手性环状胺膦配体的制备、表征及其在铁催化酮的不对称还原中的应用.手性1,2-环己二胺与双(2-甲酰基苯基)苯基膦通过[2+2]环缩合反应能够顺利获得手性22元环的亚胺膦配体21,该配体经Na BH4还原后生成大环胺膦配体22.利用手性大环胺膦配体22与Fe3(CO)12原位生成的催化体系,能够高活性、高对映选择性地实现包括杂环芳香酮在内50多种酮的不对称转移氢化和不对称氢化反应,其S/C(底物与催化剂的摩尔比)最高可达5000:1,产物手性芳香醇的光学纯度高达99%ee.  相似文献   

3.
胡向平 《分子催化》2012,26(6):487-492
将苯乙胺衍生的手性膦-亚磷酰胺酯配体应用在Rh-催化α-烯醇酯膦酸酯的不对称氢化反应中,考察了配体结构及反应条件对反应结果的影响,并在优化的条件下研究了各种底物的适用范围,产物的对映选择性最高>99%ee.  相似文献   

4.
将苯乙胺衍生的手性膦-亚磷酰胺酯配体应用在Rh-催化α-烯醇酯膦酸酯的不对称氢化反应中,考察了配体结构及反应条件对反应结果的影响,并在优化的条件下研究了各种底物的适用范围,产物的对映选择性最高〉99%ee.  相似文献   

5.
从L-氨基酸、D-樟脑、(-)-假麻黄碱、(-)-α-苯乙胺、(S)-(-)-联萘二酚等旋光源出发,合成了26个三配位及四配位手性磷化合物.作为配体催化剂,试验了它们在潜手性酮及亚胺的不对称硼烷还原反应、醛与二乙基锌的不对称烷基化反应以及醛的不对称硅腈化反应中的催化活性.发现其中有些催化剂有很好的立体选择性.  相似文献   

6.
新型手性胺膦-铱体系催化芳香酮的不对称转移氢化   总被引:2,自引:0,他引:2  
合成了含-CH_3取代基的PNNP型手性双胺双膦配体, 并采用核磁共振、质谱、红外光谱及圆二色光谱等方法对其进行了表征. 在异丙醇溶液中, 考察了该配体与[IrHCI_2(COD)]_2组成的手性胺膦-铱体系对多种芳香酮的不对称转移氢化性能. 结果表明, 该手性胺膦-铱体系是催化多种芳香酮不对称氢转移氢化的优秀催化剂. 在室温下, 用该体系催化1,1-二苯基丙酮时, 可得到99%的转化率和99% ee的对映选择性.  相似文献   

7.
对映体脂肪胺在有机合成与化工领域具有广泛的应用, 但其主要依赖于金属催化获得. 我们设计了一种光催化与酶催化级联催化的合成方法, 由脂肪醇出发合成手性脂肪胺. 通过筛选, 发现9-芴酮在可见光激发下可高效催化脂肪醇氧化为脂肪酮, 后者作为反应中间体被转氨酶在胺供体存在下经转氨反应合成手性胺. 在一锅法条件下, 该级联方法转化率可达99%, 目标产物的光学纯度>99%. 此外, 该光催化体系可分别与手性互补的转氨酶级联, 进而获得手性反转的脂肪胺产物. 该光酶级联催化方法充分结合了光催化的高效率与酶催化的立体选择性优势, 为手性脂肪胺类分子的合成提供了一种新型合成方法.  相似文献   

8.
杨忠华  姚善泾  赵珺 《催化学报》2005,26(10):895-899
 以苯乙酮为模型底物,研究了水相体系中酵母细胞催化前手性芳香酮不对称还原生成相应手性醇的反应特性. 实验发现,酵母细胞催化苯乙酮不对称还原的产物以(S)-α-苯乙醇为主,反应的立体选择性很高,(S)-α-苯乙醇的对映体过量值可达99%左右. 在pH为7~8, 酵母细胞用量为0.2 g/ml的条件下能获得较高的产物收率(可达35%左右). 酵母细胞能选择性地氧化(S)-α-苯乙醇,而留下(R)-α-苯乙醇. 在反应体系中加入合适的吸附树脂,可以降低底物和产物对细胞的毒害作用,显著提高反应底物的初始浓度,从而提高产物收率.  相似文献   

9.
在异丙醇溶液中,从[Ir(COD)Cl]2和C2-对称的手性双胺双膦配体原位制备了手性能-Ir(Ⅰ)配合物,并直接用于催化几种芳香酮的不对称氢转移氢化。结果表明,该配合物是异丙基苯基酮不对称转移氢化的优秀催化剂,当底物酮与催化剂的摩尔比(S/C)为1200:1时,在室温下反应4h后,得到相应的手性芳香醇的转化率和对映选择性分别高达98%和98%ee.  相似文献   

10.
在异丙醇溶液中,从[Ir(COD)Cl]2和C2-对称的手性双胺双膦配体原位制备了手性能-Ir(Ⅰ)配合物,并直接用于催化几种芳香酮的不对称氢转移氢化。结果表明,该配合物是异丙基苯基酮不对称转移氢化的优秀催化剂,当底物酮与催化剂的摩尔比(S/C)为1200:1时,在室温下反应4h后,得到相应的手性芳香醇的转化率和对映选择性分别高达98%和98%ee.  相似文献   

11.
Described herein are differences in behavior between a Hantzsch ester and a benzothiazoline as hydrogen donors in the chiral phosphoric acid catalyzed asymmetric reductive amination of ketones with p‐anisidine. The asymmetric reductive amination of ketones with a Hantzsch ester as a hydrogen donor provided the corresponding chiral amines exclusively, regardless of the structures of the ketones, whereas a similar transformation with a benzothiazoline provided chiral amines and p‐methoxyphenyl‐protected primary amines in variable yields, depending on the structures of both the ketones and benzothiazolines. Because a benzothiazoline has an N,S‐acetal moiety that is vulnerable to p‐anisidine, the primary amine can be formed through transimination of the benzothiazoline with p‐anisidine followed by reduction of the resulting aldimine with remaining benzothiazoline.  相似文献   

12.
A chiral disulfonimide (DSI)‐catalyzed asymmetric reduction of N‐alkyl imines with Hantzsch esters as a hydrogen source in the presence of Boc2O has been developed. The reaction delivers Boc‐protected N‐alkyl amines with excellent yields and enantioselectivity. The method tolerates a large variety of alkyl amines, thus illustrating potential for a general reductive cross‐coupling of ketones with diverse amines, and it was applied in the synthesis of the pharmaceuticals (S)‐Rivastigmine, NPS R‐568 Hydrochloride, and (R)‐Fendiline.  相似文献   

13.
Imine reductases (IREDs) are NADPH‐dependent oxidoreductases that catalyse the asymmetric reduction of cyclic prochiral imines to amines, with excellent stereoselectivity. Since their discovery, stereocomplementary IREDs have been applied to the production of both (S) and (R) cyclic secondary amines, and the expansion in gene sequences recently identified has hinted at new substrate ranges that extend into acyclic imines and even suggest the possibility of asymmetric reductive amination from suitable ketone and amine precursors. Structural studies of various IREDs are beginning to reveal the complexities inherent in determining substrate range, stereoselectivity and mechanism in these enzymes, which represent a valuable emerging addition to the toolbox of available biocatalysts for chiral amine production.  相似文献   

14.
The asymmetric reductive amination of aryl-ketones bearing various boron-functionalities (acid, ester or potassium trifluoroborates) was investigated employing enantiocomplementary ω-transaminases as catalysts. Under the optimized conditions, high conversions (up to 94%) and excellent ee’s (up to >99%) were obtained providing access to both (R)- and (S)-configured amino-aryl boronates under mild reaction conditions.  相似文献   

15.
[reaction: see text]. Cyclic amines may be prepared via a sequence of deprotection followed by intramolecular reductive amination of t-Boc-protected amino ketones under asymmetric transfer hydrogenation conditions. In cases where the corresponding imine reaction proceeds with high enantioselectivity, this is reflected in the one-step process.  相似文献   

16.
《Tetrahedron: Asymmetry》2000,11(5):1227-1237
Hexahydrobenzo[c]phenanthridines possessing a B/C cis ring junction have been synthesized in a stereoselective way starting from chiral non-racemic 2-aryl-tetralones prepared by asymmetric alkylation of (+)-(S,S)-pseudoephedrine based arylacetamide enolates with appropriately functionalized 2-aryl-1-iodoethane electrophiles. Subsequent transformations (intramolecular Friedel–Crafts acylation, stereocontrolled reductive amination and Pictet–Spengler cyclization) yielded the target heterocycles in good overall yields and in excellent stereoselectivities.  相似文献   

17.
A (S)-pyrrolidine sulfonamide catalyzed asymmetric direct aldol reaction of aryl methyl ketones with aromatic aldehydes has been developed with moderate to good enantioselectivities. The study considerably broadens the substrate scope of chiral amines promoted aldol processes.  相似文献   

18.
The development of base metal catalysts for industrially relevant amination and hydrogenation reactions by applying abundant and atom economical reagents continues to be important for the cost-effective and sustainable synthesis of amines which represent highly essential chemicals. In particular, the synthesis of primary amines is of central importance because these compounds serve as key precursors and central intermediates to produce value-added fine and bulk chemicals as well as pharmaceuticals, agrochemicals and materials. Here we report a Ni-triphos complex as the first Ni-based homogeneous catalyst for both reductive amination of carbonyl compounds with ammonia and hydrogenation of nitroarenes to prepare all kinds of primary amines. Remarkably, this Ni-complex enabled the synthesis of functionalized and structurally diverse benzylic, heterocyclic and aliphatic linear and branched primary amines as well as aromatic primary amines starting from inexpensive and easily accessible carbonyl compounds (aldehydes and ketones) and nitroarenes using ammonia and molecular hydrogen. This Ni-catalyzed reductive amination methodology has been applied for the amination of more complex pharmaceuticals and steroid derivatives. Detailed DFT computations have been performed for the Ni-triphos based reductive amination reaction, and they revealed that the overall reaction has an inner-sphere mechanism with H2 metathesis as the rate-determining step.

A Ni-triphos based homogeneous catalyst enabled the synthesis of all kinds of primary amines by reductive amination of carbonyl compounds with ammonia and hydrogenation of nitroarenes.  相似文献   

19.
Metal-catalyzed asymmetric transfer hydrogenation is a powerful and practical method for the reduction of ketones to produce the corresponding secondary alcohols, which are valuable building blocks in the pharmaceutical, perfume, and agrochemical industries. Hence, a series of novel chiral β-amino alcohols were synthesized by chiral amines with regioselective ring opening of (S)-propylene oxide or reaction with (S)-(+)-2-hydroxypropyl p-toluenesulfonate by a straightforward method. The chiral ruthenium catalytic systems generated from [Ru(arene)(μ-Cl)Cl]2 complexes and chiral phosphinite ligands based on amino alcohol derivatives were employed in asymmetric transfer hydrogenation of ketones to give the corresponding optically active alcohols; (2S)-1-{[(2S)-2-[(diphenylphosphanyl)oxy]propyl][(1R)-1-phenylethyl]amino}propan-2-yldiphenylphosphinitobis[dichol-oro(η6-benzene)ruthenium(II)] acts an excellent catalyst in the reduction of α-naphthyl methyl ketone, giving the corresponding alcohol with up to 99% ee. The substituents on the backbone of the ligands were found to have a remarkable effect on both the conversion and enantioselectivity of the catalysts. Furthermore, this transfer hydrogenation is characterized by low reversibility under these conditions.  相似文献   

20.
Formation of N-alkylated α-methyltryptamine derivatives (2) was accomplished by simple reductive amination of amine (1) with ketones using catalytic hydrogenation conditions (3 atm H2 and 10% Pd on carbon). This method was also applied to other primary and secondary amines using ketones and aldehydes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号