首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 78 毫秒
1.
采用气相挥发法在聚合物氮化碳(PCN)结构中引入了适量的铁(Fe)掺杂组分,成功制备出具有可调Fe掺杂浓度的PCN半导体光催化剂, 其中0.55wt%Fe掺杂的PCN析氢催化活性(410μmol/h)为原始PCN的2.6倍并通过XRD、UV-Vis、PL、XPS、SEM等表征阐明了Fe掺杂对PCN的影响和作用机理。同时调控钒酸铋的生长环境(络合剂、水热时间、pH)合成了具备不同形貌的钒酸铋(BiVO4),进一步成功合成了暴露{010}和{-121}晶面的十面体BiVO4。Z型体系中还原和氧化过程分离,可以在不同催化剂上分别进行氧化还原反应,能够有效抑制逆反应的发生,同时扩宽光催化材料的设计和选择的可能性。以PCN作为产氢端催化剂,十面体BiVO4作为产氧端催化剂,以Fe3+/Fe2+作为离子对构建了Z型体系实现了光催化全解水。其中0.55wt%Fe掺杂的PCN-Fe/BiVO4表现出了更优异的光催化活性,全解水的产氢性能比未改性的PCN/BiVO4提升近一倍,进一步验证了气相挥发法掺杂Fe改性策略的有效性。这种基于催化剂(氮化碳)性质的掺杂改性方法对于催化剂的优化和设计以及构建Z型光催化全解水体系的探索具备一定的借鉴意义。  相似文献   

2.
随着现代工业的迅猛发展和化石燃料的过量使用,全球范围内能源和环境问题日益严峻,因此利用丰富的太阳光能分解水来直接制取清洁的氢气具有诱人的应用前景.目前,聚合物半导体石墨相氮化碳(g-C_3N_4)因其廉价、稳定、不含金属组分和独特的电子能带结构已被广泛应用于光解水产氢研究.然而,氮化碳具有结晶度差、光生载流子易复合的缺点.众所周知,Z型体系可以很好地减少电子和空穴的复合问题.同时,催化剂只需分别满足光解水过程的一端,这使得半导体光催化剂的选择非常丰富,可以大大拓宽材料体系.因此,将g-C_3N_4运用到Z型体系中的研究得到了广泛关注.然而,这些研究多集中在如何增强g-C_3N_4的产氢能力方面,对实现水的完全分解的研究鲜见报道.本实验设计了这样一种Z型体系:使用掺Zn的g-C_3N_4作为产氢端,BiVO_4作为产氧端,Fe3+/Fe2+作为氧化还原对.实验结果表明,该体系可以在全波段下实现水的完全分解(氢氧比为2:1),并且保持相当高的稳定性.实验所使用的氮化碳为固相法烧结尿素制得,Zn的掺杂采用浸渍法,同时通过水热法合成BiVO_4,使用Pt作为助催化剂.通过搭建含有不同组成成分的Z型体系,将它们的性能和表征结果进行比较分析.通过XRD,UV-Vis,SEM和XPS等测试手段对催化剂进行表征.XRD分析结果表明成功合成了掺杂Zn的石墨相氮化碳.UV-Vis则显示随着Zn浓度的提高,吸收边发生变化.通过改变掺杂Zn的浓度,得到了能够实现完全分解水的Z型体系,其最佳掺杂比例为:Zn Cl2和氮化碳的质量比为1:10.为了排除单催化剂和Pt颗粒对完全分解水性能的影响,分别作了单独产氢端、单独产氧端、预负载Pt和光沉积Pt的性能测试.从SEM中没有发现g-C_3N_4和BiVO_4的异质结结构.这些结果表明所搭建的是典型的利用氧化还原离子对为中间电子传输载体的Z型体系,经长达12 h的持续测试证明其具有较高的稳定性.为了研究Zn在构建Z型中所起的作用,分别采用文献中报道的原位和浸渍法实现Zn的掺杂.对这两种掺杂方式的性能测试表明,只有采用浸渍法时,所构建的Z型体系具有完全分解水的能力.对这两种方法得到的掺Zn氮化碳进行表面化学组成和价态(XPS)的分析.结果显示,两种掺杂方法都可以通过形成Zn=N键的形式实现Zn的掺杂,但浸渍法使Zn在g-C_3N_4表面分布更均匀,同时对氮化碳原本三嗪环的破坏较小,因此具有更好的还原能力,可以与BiVO_4匹配以构成Z型体系.实验通过采用掺杂Zn的氮化碳作为产氢催化剂,BiVO_4作为产氧催化剂,Fe3+/Fe2+作为氧化还原中间体,构建了典型的Z型体系.该体系在Zn的掺杂浓度为10%时能够实现长时间稳定的完全分解水.  相似文献   

3.
导电聚合物型光催化材料g-C3N4有着独特的电子结构、稳定的化学性能和显著的可见光催化活性。基于g-C3N4的Z型光催化体系(Z-g-C3N4)的催化效率高、电子-空穴复合率低而备受关注,在光催化领域展现出了巨大的应用潜力。本文阐述了Z-g-C3N4型光催化反应体系的作用机理,综述了Z-g-C3N4在光催化领域的研究进展,介绍了Z-g-C3N4在产氢、转化CO2、降解有机物等光催化领域的应用,讨论了pH值、导电介质等因素对Z-g-C3N4光催化性能的影响。最后指出了Z-g-C3N4光催化体系在研究过程中面临的问题和研究方向。  相似文献   

4.
光催化剂的晶体结构、电子结构、表面结构等都会对自身性质产生决定性的作用,因此认识和理解光催化材料自身结构和光催化性能之间的内在联系有助于设计合成更高效的光催化剂以及光催化复合体系.本文通过聚合络合法和溶胶凝胶水热法分别制备了镧和铬共掺杂的光催化剂,标记为和在碘化钠或甲醇作为牺牲试剂的产氢反应中,担载Pt的样品显示了光催化活性,而担载Pt的样品活性很低,甚至无活性.我们将这两种材料分别作为产氢光催化剂与三氧化钨耦合构建Z机制全分解水体系.研究发现,只有体系观察到了氢气和氧气的产生.在第一个10 h的循环反应中,产生的摩尔比为3.7,明显高于水分解为2的化学计量比.这是因为在反应起始时加入的是Na I,质子还原产氢反应占据了主导.随着氢气的不断产生,部分I-被氧化成了IO_3-,而IO_3-的存在就可以驱动氧气的产生,由于溶液中氧化还原电的共存就可以持续驱动氢气和氧气的同时生成.为了测试体系的稳定性,我们将前面产生的气体完全抽空后又进行第二次10 h的循环反应,总共进行三次循环反应.在第一次循环过程中氢气、氧气生成速率分别为9.1和2.4mmol h~(–1),第二次循环其速率分别为9.9和3.7mmol h~(–1),第三次循环速率分别达到10.4和4.9mmol h~(–1).此外,通过三次循环后摩尔比为2.1,接近水分解的化学计量比.结合紫外可见漫反射光谱和Mott-Schottky曲线可以确定两种样品的能带位置.从能带位置示意图可知,两种样品都具有足够负的导带电势还原质子产氢以及足够正的价带电势氧化水产氧.需要指出的是样品的导带电势比样品的导带电势更负,这意味着前者的导带电势更有利于还原质子产氢.霍尔效应测试的结果表明,两种样品均显示出n型半导体的特征,此外样品显示出比样品更快的载流子迁移率以及更高的载流子浓度.因此,两种样品不同的导带位置以及不同的载流子迁移率和载流子浓度很可能是造成两者光催化性能具有显著差异的主要原因.  相似文献   

5.
通过水热和原位还原法制备了一种新型Z型异质结三元复合材料Au NPs/g-C3N4/BiOBr,并通过X射线衍射、X射线光电子能谱、透射电子显微镜、紫外-可见漫反射光谱和光致发光发射光谱等技术对材料的形貌、结构进行了表征。通过在可见光下降解苯酚来评价光催化剂的活性。研究发现,Au NPs/g-C3N4/BiOBr显示出增强的光催化活性,对苯酚的降解能力是g-C3N4的3倍,是BiOBr的2.5倍。这可归因于三元复合材料的窄带隙(2.10eV)、Z型机理对光生电子-空穴对的有效分离和Au纳米颗粒的表面等离子体共振效应(SPR)。  相似文献   

6.
7.
To increase the number of active sites and defects in TiO2 and promote rapid and efficient transfer of photogenerated charges, a g-C3N4@C-TiO2 composite photocatalyst was prepared via in situ deposition of g-C3N4 on a carbon-doped anatase TiO2 surface. The effects of carbon doping state and surface modification of g-C3N4 on the performance of g-C3N4@C-TiO2 composite photocatalysts were studied by X-ray diffraction, X-ray photoelectron spectroscopy, UV-visible diffuse-reflectance spectroscopy, transmission electron microscopy, electrochemical impedance spectroscopy, photoluminescence, and electron paramagnetic resonance. With increasing carbon doping content, the carbon doping state in TiO2 gradually changed from gap to substitution doping. Although the number of oxygen vacancies gradually increased, the degradation efficiency of g-C3N4@C-TiO2 for RhB (phenol) initially increased and subsequently decreased with increasing carbon content. The g-C3N4@10C-TiO2 sample exhibited the highest apparent reaction rate constant of 0.036 min?1 (0.039 min?1) for RhB (phenol) degradation, which was 150 (139), 6.4 (6.8), 2.3 (3), and 1.7 (2.1) times higher than that of pure TiO2, 10C-TiO2, g-C3N4, and g-C3N4@TiO2, respectively. g-C3N4 was grown in situ on the surface of C-TiO2 by surface carbon hybridization and bonding. The resultant novel g-C3N4@C-TiO2 photocatalyst exhibited direct Z-scheme heterojunctions with non-local impurity levels. The high photocatalytic activity can be attributed to the synergistic effects of the improved visible light response ability, higher photogenerated electron transfer efficiency, and redox ability arising from Z-type heterojunctions.  相似文献   

8.
全球工业化进程的加快使人们饱受环境污染问题的困扰.半导体光催化技术作为一种高效、绿色、有潜力的新技术,在环境净化方面有着广阔的应用前景.Bi2O4是近年来新开发出的一种铋基光催化剂,在环境净化方面已有一些研究.但是,单体光催化剂通常存在光响应范围窄、光生载流子复合率高等问题,这些不足限制了Bi2O4的进一步应用.因此,需要通过适当的改性来拓宽其光响应范围和提高其载流子的分离效率,从而提高其光催化活性.构建Z型异质结被认为是提高光催化剂光生载流子分离效率并进一步提高光催化活性的有效方法.MoO3是一种宽禁带的n型半导体,具有独特的能带结构、光学特性和表面效应,是一种非常有前景的半导体光催化剂.虽然MoO3材料的光生载流子复合率高,带隙(2.7-3.2 eV)大,不利于其参与光催化反应,但MoO3与其他合适的半导体配位形成复合材料后能够有效提高其光生载流子的分离效率,从而提高其光催化活性.本研究采用简单的水热法制备了一种新型Z型MoO3/Bi2O4复合光催化剂,SEM和TEM分析结果表明,MoO3和Bi2O4紧密结合在一起.X射线光电子能谱分析表明,MoO3和Bi2O4之间存在很强的界面相互作用,这有助于电荷转移和光生载流子的分离.光致发光光谱、电阻抗和光电流测试也证明了MoO3/Bi2O4复合光催化剂的光生载流子分离效率更高,形成了更强的光电流.通过在可见光下降解RhB溶液评价了所合成光催化剂的光催化性能.15%MoO3/Bi2O4(15-MB)复合光催化剂表现出了最佳的可见光催化活性,在40 min内对10 mg/L RhB溶液的降解率达到了99.6%,其降解速率是Bi2O4的2倍.此外,15-MB复合光催化剂在经过五次循环降解RhB溶液后仍保持良好的光催化活性和稳定性,表明MoO3/Bi2O4复合光催化剂具有较强的应用潜力.通过自由基捕获实验确定了光催化反应中主要的活性自由基为 O2-和h+.通过莫特-肖特基测试和带隙计算得到MoO3和Bi2O4的价带和导带位置.最后,根据实验和分析结果提出了Z型MoO3/Bi2O4复合光催化剂在可见光下降解RhB溶液的机理.本研究为设计铋基Z型异质结光催化剂用于高效去除环境污染物提供了一种有前景的策略.  相似文献   

9.
近几十年来,光电化学分解水制氢作为一种洁净的、能持续利用太阳能的技术受到极大关注.在众多光催化材料中,p型半导体氧化亚铜(Cu2O)被认为是最有前途的可见光光电分解水材料之一.理论上,它的光能转换为氢能的效率可达到18.7%.然而,目前所报道的Cu2O光转换效率远远低于此值;同时,纯Cu2O在光照条件下的稳定性较差.研究表明,Cu2O与其它半导体复合可以增强其光电转换效率和提高稳定性.如Cu2O和能带匹配的石墨相氮化碳(g-C3N4)复合后,光催化性能和稳定性都有较大提高.但目前所报道的Cu2O/g-C3N4复合物几乎都是粉末状催化剂,不便于回收和重复使用.本文首先采用电化学方法在FTO导电玻璃上沉积Cu2O薄膜,采用溶胶凝胶法制备g-C3N4纳米颗粒材料,然后采用电化学法在Cu2O薄膜表面沉积一层g-C3N4纳米颗粒,得到了Cu2O/g-C3N4异质结膜.分别利用X射线粉末衍射(XRD)、高分辨透射电子显微镜(HRTEM)、扫描电子显微镜(SEM)、紫外可见光谱(UV-Vis)和光电化学分解水实验分析了Cu2O/g-C3N4异质结的组成结构、表面形貌、光吸收性能及催化剂活性和稳定性.XRD和HRTEM表征显示,本文成功合成了Cu2O/g-C3N4异质结材料,SEM图表明g-C3N4纳米颗粒在Cu2O表面分布均匀,大小均一.可见光光电化学分解水结果显示,异质结薄膜的光电化学性能比纯的Cu2O和g-C3N4薄膜材料有极大提高.当在Cu2O表面沉积g-C3N4的时间为15 s时,得到样品Cu2O/g-C3N4-15异质结膜,其在–0.4 V和可见光照射条件下,光电流密度达到了–1.38 mA/cm2,分别是纯Cu2O和g-C3N4薄膜材料的19.7和6.3倍.产氢速率也达到了0.48 mL h–1 cm–2,且产氢和产氧的速率之比约为2,说明此异质结材料在可见光作用下能全分解水.经过三次循环实验,光电化学分解水的效率仅降低10.8%,表明该材料具有良好的稳定性.根据UV-Vis表征和光电化学性能对比,Cu2O/g-C3N4-15的光电性能最好,但其光吸收性能并不是最好,说明光电化学性能与光吸收不是成正比关系,主要是由于Cu2O和g-C3N4两个半导体相互起到了协同作用.机理分析表明,Cu2O/g-C3N4异质结薄膜在光照下,由于两者能带匹配,Cu2O的光生电子从其导带转移到g-C3N4的导带上,g-C3N4价带上的空隙转移到Cu2O的价带上,从而降低了光生电子和空隙的复合,提高了其光催化性能.由于g-C3N4的导带位置高于H2O(或H+)还原为H2的电势,Cu2O的价带位置低于H2O(或OH–)还原为O2的电势,所以在外加–0.4 V偏压和可见光照射条件下,Cu2O/g-C3N4能全分解水,光生载流子越多,光电化学分解水的速率越大.综上所述,在Cu2O薄膜上沉积g-C3N4后得到的异质结薄膜具有高效的光能转换为氢能性能.  相似文献   

10.
Cr-doped SrTi1−xCrxO3 (x=0.00, 0.02, 0.05, 0.10) powders, prepared by solvothermal method, were further characterized by ultraviolet-visible (UV-vis) absorption spectroscopy. The UV-vis spectra indicate that the SrTi1−xCrxO3 powders can absorb not only UV light like pure SrTiO3 powder but also the visible-light spectrum (λ>420 nm). The results of density functional theory (DFT) calculation illuminate that the visible-light absorption bands in the SrTi1−xCrxO3 catalyst are attributed to the band transition from the Cr 3d to the Cr 3d+Ti 3d hybrid orbital. The photocatalytic activities of chromium-doped SrTiO3 both under UV and visible light are increased with the increase in the amounts of chromium.  相似文献   

11.
刘志锋  鲁雪 《催化学报》2018,39(9):1527-1533
光电化学分解水制氢可以一并解决环境问题和能源危机,因而成为研究热点.由于TiO_2 禁带宽度较大,不能有效吸收太阳光中的可见光,使光电化学分解水制氢的应用受限.g-C_3N_4的禁带宽度约为2.7 e V,能有效吸收可见光,但g-C_3N_4薄膜制备研究较少.我们通过热聚缩合法直接在FTO导电玻璃上制备出g-C_3N_4薄膜,发现其光电化学分解水制氢稳定性不高,选择易制备的TiO_2 作为保护层可以提高g-C_3N_4的耐用性.此外,为提高g-C_3N_4光生电子空穴对的分离能力,依靠Co-Pi对光生空穴的捕获作用而将其覆盖在最外层.因此本文首次制备一种新型的g-C_3N_4/TiO_2 /Co-Pi光阳极用于光电化学分解水制氢,其中g-C_3N_4用作光吸收层,TiO_2 用作保护层,Co-Pi用作空穴捕获层.并在此基础上,通过扫描电子显微镜(SEM),X射线衍射(XRD),紫外可见光谱(UV-Vis)等手段研究了g-C_3N_4/TiO_2 /Co-Pi光阳极的形貌特征和光电化学性能.SEM、EDS和XRD结果表明,g-C_3N_4/TiO_2 /Co-Pi光阳极被成功制备在了FTO导电玻璃上,厚度约为3μm.UV-Vis测试表明,g-C_3N_4的光吸收边约为470 nm,可以有效地吸收可见光,并且g-C_3N_4的框架结构使光多次反射折射增加了光的捕获能力,由此可见,g-C_3N_4能够发挥很好的光吸收层作用.通过对g-C_3N_4光阳极,g-C_3N_4/TiO_2 光阳极和g-C_3N_4/TiO_2 /Co-Pi光阳极的电流电压测试发现,g-C_3N_4/TiO_2 光阳极的光电流密度小于g-C_3N_4光阳极,而g-C_3N_4/TiO_2 /Co-Pi光阳极的光电流密在可逆氢电极1.1 V下达到了0.346 mA?cm–2,约为单独g-C_3N_4光阳极的3.6倍.这说明Co-Pi是提升g-C_3N_4光电化学性能的主要因素.电化学阻抗测试结果发现,g-C_3N_4/TiO_2 /Co-Pi光阳极的界面电荷转移电阻小于g-C_3N_4光阳极的,这表明g-C_3N_4/TiO_2 /Co-Pi光阳极界面处载流子转移较快,同时也能促进内部光生电子空穴对的分离,整体性能的提高应该主要归因于Co-Pi对光生空穴的捕获作用.恒电压时间测试展示出g-C_3N_4/TiO_2 /Co-Pi光阳极的光电流密度在2 h测试过程中没有明显下降,表明g-C_3N_4/TiO_2 /Co-Pi光阳极是相当稳定的,具有良好的耐用性,归因于TiO_2 和Co-Pi的共同保护作用,主要归因于TiO_2 层对FTO导电玻璃上的g-C_3N_4薄膜保护,从电化学沉积Co-Pi到所有测试结束.总体而言,g-C_3N_4/TiO_2 /Co-Pi光阳极加强的光电化学性能归因于以下几个因素:(1)g-C_3N_4优异的光吸收能力;(2)TiO_2 稳定的保护提升了g-C_3N_4薄膜的耐用性;(3)Co–Pi对光生空穴的捕获有效促进了光生电子空穴对的分离.  相似文献   

12.
《中国化学快报》2020,31(10):2645-2650
The binary Ag3PO4/MIL-125-NH2 (AMN-X) composites were synthesized through ion exchange-solution method, and the ternary Ag/Ag3PO4/MIL-125-NH2 (AAMN-X) Z-scheme heterojunctions were prepared via the photo chemical reduction deposition strategy. The photocatalytic hexavalent chromium (Cr(VI)) sequestration over AMN-X and AAMN-X were investigated under visible light. AAMN-120 accomplished superior reduction performance due to that Ag nanoparticles (NPs) act as electrons transfer bridge to enhance the separation efficiency of photogenerated e-h+ pairs, in which the reaction rates (k value) were 2.77 and 124.2 fold higher than those of individual MIL-125-NH2 and Ag3PO4, respectively. The influences of different pH values, small organic acids and coexisting ions on the photocatalytic performance of AAMN-120 were also investigated. In addition, the AAMN-120 heterojunction expressed great reusability and stability in cycling experiments. The mechanism of photocatalytic Cr(VI) was investigated and verified through photoluminescence (PL), electrochemistry, electron spin resonance (ESR), active species capture, and Pt element deposition experiments.  相似文献   

13.
Advances in noble metal mediated Z-scheme photocatalytic system have ushered in a climax on environmental remediation. Herein, graphitic carbon nitride (GCN) and phosphorus sulphur co-doped graphitic carbon nitride (PSCN) were synthesized via calcination process. GCN, PSCN and Z-scheme visible light driven (VLD) ternary BiOBr/PSCN/Ag/AgCl nanophotocatalyst were characterized by X-ray diffraction pattern (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–visible diffuse reflectance spectra (UV–vis DRS). BiOBr/PSCN/Ag/AgCl nanocomposite exhibited superior visible light driven photocatalytic ability as compared to pristine PSCN, AgCl and BiOBr towards degradation of phenol. The results explicated promising photocatalytic activity along with space separation of photocarriers caused via formation of BiOBr/PSCN/Ag/AgCl Z-scheme heterojunction. The visible light absorption efficacy of BiOBr/PSCN/Ag/AgCl photocatalyst was confirmed by photoluminescence (PL) spectra. Finally, recycling experiments were explored for the mechanistic detailing of phenol photodegradation employing BiOBr/PSCN/Ag/AgCl photocatalyst. After seven successive cycles photodegradation efficacy of photocatalyst was reduced to 90% from 98%. Proposed mechanism of BiOBr/PSCN/Ag/AgCl nanophotocatalyst for degradation of phenol was discussed. OH and O2 radicals were main reactive species responsible for photocatalytic phenol degradation.  相似文献   

14.
The g-C(3)N(4)-ZnO composite photocatalysts with various weight percents of ZnO were synthsized by a simple calcination process. The photocatalysts were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), UV-vis diffuse reflection spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The PXRD and HR-TEM results show that the composite materials consist of hexagonal wurzite phase ZnO and g-C(3)N(4). The solid-state UV-vis diffuse reflection spectra show that the absorption edge of the composite materials shifts toward the lower energy region and to longer wavelengths in comparison with pure ZnO and g-C(3)N(4). Remarkably, the photocatalytic activity of g-C(3)N(4)-ZnO composites has been demonstrated, via photodegradation of Methyl Orange (MO) and p-nitrophenol experiments. The photocatalytic activity of g-C(3)N(4)-ZnO for photodegradation of Methyl Orange and p-nitrophenol under visible light irradiation was increased by over 3 and 6 times, respectively, to be much higher than that of single-phase g-C(3)N(4), clearly demonstrating a synergistic effect between ZnO and g-C(3)N(4). The concentrations of Zn(2+) in g-C(3)N(4)-ZnO system after a photocatalytic reaction at various reaction times were found to be much lower than those for a ZnO system under the same reaction conditions, indicating that the g-C(3)N(4)-ZnO composite possesses excellent long-term stability for a photocatalytic reaction in aqueous solutions. Furthermore, a synergistic photocatalysis mechanism between ZnO and g-C(3)N(4) was proposed based on the photodegradation results. Such obviously improved performance of g-C(3)N(4)-ZnO can be ascribed mainly to the enhancement of electron-hole separations at the interface of ZnO and g-C(3)N(4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号