首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Energy crisis has become a serious global issue due to the increasing depletion of fossil fuels; therefore, it is crucial to develop environmentally friendly and renewable energy resources, such as hydrogen (H2), to replace fossil fuels. From this viewpoint, photocatalytic H2 production is considered as one of the most promising technologies. Noble metal platinum (Pt) can be applied as an efficient cocatalyst for improving the H2 production performance of photocatalytic systems; however, its high cost limits its further application. Thus, the development of novel, high-activity, and low-cost cocatalysts for replacing noble metal cocatalysts is of great significance for use in photocatalytic H2 evolution techniques. Herein, we successfully synthesized a Ni2P/graphite-like carbonitride photocatalyst (Ni2P/CN) using a conjugated polymer (SCN)n as precursor for enhanced photocatalytic H2 production under visible light illumination. Various characterization techniques, including optical and photoelectronic chemical tests, were used to investigate the structural composition, morphology, and light adsorption ability of these materials. X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy results showed that Ni2P/CN nanocomposites with good crystal structure were obtained. Scanning electron microscopy and transmission electron microscopy results revealed that the Ni2P/CN samples had a typical two-dimensional layered structure, and the Ni2P nanoparticles were uniformly loaded on the surface of the CN to form a non-noble metal promoter. UV-Vis diffuse reflectance spectra results demonstrated that the loading of Ni2P nanoparticles effectively enhances the adsorption capacity of CN to visible light. Photoluminescence spectroscopy and photocurrent (PL) results suggested that Ni2P loading to CN is beneficial for promoting the migration and separation efficiency of photogenerated carriers. Photocatalytic H2 production was conducted under visible light irradiation with triethanolamine as a sacrificial agent. The results suggest that the Ni2P/CN composite photocatalysts exhibit excellent photocatalytic reduction performance. In particular, the H2 evolution rate of the optimal Ni2P/CN nanocomposite is 623.77 μmol·h-1·g-1, which is higher than that of CN modified by noble metal Pt, i.e., 524.63 μmol·h-1·g-1. In conclusion, Ni2P nanoparticles are homogeneously attached to the surface of CN, and a strong interfacial effect exists between them, thereby forming an electron transfer tunnel that greatly inhibits the recombination of photoinduced carriers and promotes the migration of electrons from CN to Ni2P. In addition, a possible photocatalytic mechanism is proposed based on the experiments and characterizations. This work has profound significance for developing non-noble metal cocatalysts for the substitution of noble metal cocatalysts for high-efficiency photocatalytic H2 evolution.   相似文献   

2.
石墨相氮化碳(g-C3N4)是一种新型的有机半导体材料,具有独特的层状结构、合适的能带位置、简单的制备方法以及出色的稳定性等特点,因而被广泛应用于光催化产氢领域.但是,较高的光生载流子的复合率和受限的迁移率大大地限制了g-C3N4的光催化产氢性能.目前,大量的研究证实块状g-C3N4的液相剥离、表面改性、元素掺杂、与其他半导体复合构筑异质结以及负载助催化剂等方法可以在一定程度上提高g-C3N4的光催化产氢性能.但是单一的g-C3N4改性方法往往并不能获得最理想的光催化产氢性能,因此,本文采用低温磷化法制备了二价钴(Co(II))修饰的磷(P)掺杂的g-C3N4纳米片(Co(II)/PCN),同时实现了掺杂P原子和负载空穴助催化剂Co(II),该催化剂表现出出色的光催化产氢性能.在光催化制氢过程中,铂(Pt)纳米颗粒作为电子助催化剂成功的负载在Co(II)/PCN上.光催化实验结果表明,最佳的Pt/Co(II)/PCN复合材料光催化产氢速率达到774μmol·g^?1·h^?1,比纯相的g-C3N4纳米片(89.2μmol·g^?1·h^?1)提升8.6倍.同时优化的光催化剂具有良好的光催化稳定性,并在402 nm处具有2.76%的量子产率.XRD,TEM,STEM-EDX和AFM结果证明,成功制备了纳米片状形貌的g-C3N4及其复合材料,催化剂中均匀的分布着Co和P元素.通过XPS证明了P-N的存在以及Co(II)的存在,并且Co(II)是以一种无定型的CoOOH的形式吸附在g-C3N4表面.光照后的TEM证明Pt颗粒成功的负载在Co(II)/PCN表面.UV-vis DRS表明,由于P的掺杂以及Co(II)的修饰,Co(II)/PCN相比于g-C3N4纳米片在可见光区域光吸收有了明显的增强.通过稳态和瞬态光致发光光谱分析,同时结合电化学分析表征(i-t、EIS)以及电子顺磁共振技术分析,证实了Co(II)/PCN高效光催化性能的原因可能是由于更高效的光生载流子分离效率.本文对Pt/Co(II)/PCN可能的光催化增强机理提出了设想.P的掺杂可以优化g-C3N4的电子结构,提高其光生载流子分离效率.而以Pt作为电子助催化剂,可以有效地捕获P掺杂的g-C3N4导带中的光生电子,进而发生水还原产氢反应;以Co(II)作为空穴助催化剂,可以捕获价带中的光生空穴,进而发生三乙醇胺氧化反应.通过采用不同功能的助催化剂,实现P掺杂g-C3N4光生电子空穴的定向分流,促进了P掺杂g-C3N4的光生载流子的分离,从而提高催化剂的光催化产氢性能.本文可以为设计具有空穴-电子双助催化剂的光催化产氢系统提供一个新的思路.  相似文献   

3.
近年来,利用太阳光光解水制氢被认为是解决当前能源短缺和环境污染问题的重要途径之一.众所周知,助催化剂可以有效的降低光催化产氢反应的活化能,提供产氢反应的活性位点,有效的促进催化剂中光生载流子的传输与分离,从而提高光催化剂产氢体系的反应活性和稳定性.然而,鉴于贵金属助催化剂(Pt, Au和Pd等)储量低、成本高,极大地制约了其应用.因而,开发出适用于光催化水分解制氢的非贵金属助催化剂尤为重要.石墨相氮化碳(g-C_3N_4)因其具有热稳定性、化学稳定性高以及制备成本低廉等优点,成为光催化领域研究的热点.然而,由于g-C_3N_4的禁带宽度(Eg=2.7 eV)较宽,致使其对可见光的响应能力较弱,并且在光催化反应过程中其光生电子-空穴对易复合,从而导致其光催化产氢活性较低.因此,如何开发出含非贵金属助催化剂的g-C_3N_4高效、稳定的太阳光催化分解水制氢体系引起了人们极大的关注.本文通过水热法-高温氨化法首次将非贵金属Ni_3N作为助催化剂来修饰g-C_3N_4,增强其可见光光催化性能(l420 nm).采用XRD、SEM、EDS、Mapping、UV-Vis、XPS和TEM等手段对Ni_3N/g-C_3N_4光催化体系进行了表征.结果表明, Ni_3N纳米颗粒成功的负载到g-C_3N_4表面且没有改变g-C_3N_4的层状结构.此外,采用荧光光谱分析(PL)、阻抗测试(EIS)和光电流谱进行表征,结果显示, Ni_3N纳米颗粒可有效促进催化剂中光生载流子的传输与分离,抑制电子-空穴对的复合.同时,将功率为300 W且装有紫外滤光片(λ420 nm)的氙灯作为可见光光源进行光催化产氢实验结果表明,引入了一定量的Ni_3N可以极大提高g-C_3N_4的光催化活性,其中, Ni_3N/g-C_3N_4#3的产氢量为~305.4μmol·h-1·g-1,大约是单体g-C_3N_4的3倍.此外,在450nm单色光照射下, Ni_3N/g-C_3N_4光催化产氢体系的量子效率能达到~0.45%,表明Ni_3N/g-C_3N_4具有将入射电子转化为氢气的能力.循环产氢实验表明, Ni_3N/g-C_3N_4在光催化产氢过程中有着较好的产氢活性和稳定性.最后,阐述了Ni_3N/g-C_3N_4体系的光催化产氢反应机理.本文采用的原料价格低廉,性能优异,制备简单,所制材料在光催化制氢领域展现出重要前景.  相似文献   

4.
开发高效、廉价的非贵金属助催化剂一直是光催化分解水产氢领域备受关注的研究热点.本文采用水热和煅烧法合成非贵金属CoP负载的CdS纳米棒复合光催化材料.当CoP负载的质量分数为15%时,CoP/CdS复合光催化剂的产氢性能最优,达4 729.38μmol·g-1·h-1,是单一CdS的83倍.产氢测试结果表明,CoP作为助催化剂可以有效地提升光生载流子的分离效率,从而提高光催化产氢性能.此外,本文还重点研究助催化剂CoP与CdS之间光生载流子分离、传输行为以及复合比例对CdS光催化产氢活性的影响规律及其光催化产氢活性增强机理.本工作为设计开发低成本、高效的光催化材料提供了新的策略.  相似文献   

5.
以Ga2O3半导体为前驱体,用浸渍加低温磷化法制备了P掺杂Ga2O3表面修饰Ni2P光催化剂(x-Ni2P/Ga2O3-Py,x代表Ni2+和Ga2O3的物质的量之比,y代表NaH2PO·H2O与Ga2O3的物质的量之比)。5%-Ni2P/Ga2O3-P6催化剂展现出在纯水中光催化析氢的高活性,在430 nm光照下的光量子效率为0.22%。机理研究结果表明Ni2P修饰和P掺杂扩展了催化剂的光响应范围,同时提升了载流子分离迁移效率,其长周期光催化反应稳定性明显优于未磷化催化剂。  相似文献   

6.
以Ga2O3半导体为前驱体,用浸渍加低温磷化法制备了P掺杂Ga2O3表面修饰Ni2P光催化剂(x-Ni2P/Ga2O3-Py,x代表Ni2+和Ga2O3的物质的量之比,y代表NaH2PO·H2O与Ga2O3的物质的量)。5%-Ni2P/Ga2O3-P6催化剂展现出在纯水中光催化析氢的高活性,在430 nm光照下的光量子效率为0.22%。机理研究结果表明Ni2P修饰和P掺杂扩展了催化剂的光响应范围,同时提升了载流子分离迁移效率,其长周期光催化反应稳定性明显优于未磷化催化剂。  相似文献   

7.
结合异质结构建与共催化剂改性, 以花球状Ni(OH)2为前驱体, 经热磷酸化后得到Ni(PO3)2-Ni2P二元助催化剂, 借助超声化学合成法, 与CdS NPs复合, 形成非贵金属CdS基三元光催化材料Ni(PO3)2-Ni2P/CdS NPs. 以Na2S-Na2SO3为牺牲剂, 在可见光(λ>420 nm)照射下, 在不借助任何贵金属的情况下, 负载量为8%(质量分数)的Ni(PO3)2-Ni2P/CdS NPs复合材料的光催化产氢速率达到4237 μmol·g?1·h?1, 为CdS NPs(217 μmol·g?1·h?1)的19倍. 在产氢循环实验中, 反应进行到第6次循环(18 h)后, 复合材料的产氢速率约为初始的89%, 具有较好的稳定性. 与CdS NPs相比, Ni(PO3)2-Ni2P/CdS NPs的吸收边明显红移, 禁带宽度降至1.86 eV, 并降低了H+还原的过电位, 显示出增强的光吸收性能和适宜的带隙结构. 通过Ni(PO3)2-Ni2P与CdS NPs之间的协同效应, 有效促进了光生载流子的分离, 提高了产氢活性和稳定性.  相似文献   

8.
光催化剂的晶体结构、电子结构、表面结构等都会对自身性质产生决定性的作用,因此认识和理解光催化材料自身结构和光催化性能之间的内在联系有助于设计合成更高效的光催化剂以及光催化复合体系.本文通过聚合络合法和溶胶凝胶水热法分别制备了镧和铬共掺杂的光催化剂,标记为和在碘化钠或甲醇作为牺牲试剂的产氢反应中,担载Pt的样品显示了光催化活性,而担载Pt的样品活性很低,甚至无活性.我们将这两种材料分别作为产氢光催化剂与三氧化钨耦合构建Z机制全分解水体系.研究发现,只有体系观察到了氢气和氧气的产生.在第一个10 h的循环反应中,产生的摩尔比为3.7,明显高于水分解为2的化学计量比.这是因为在反应起始时加入的是Na I,质子还原产氢反应占据了主导.随着氢气的不断产生,部分I-被氧化成了IO_3-,而IO_3-的存在就可以驱动氧气的产生,由于溶液中氧化还原电的共存就可以持续驱动氢气和氧气的同时生成.为了测试体系的稳定性,我们将前面产生的气体完全抽空后又进行第二次10 h的循环反应,总共进行三次循环反应.在第一次循环过程中氢气、氧气生成速率分别为9.1和2.4mmol h~(–1),第二次循环其速率分别为9.9和3.7mmol h~(–1),第三次循环速率分别达到10.4和4.9mmol h~(–1).此外,通过三次循环后摩尔比为2.1,接近水分解的化学计量比.结合紫外可见漫反射光谱和Mott-Schottky曲线可以确定两种样品的能带位置.从能带位置示意图可知,两种样品都具有足够负的导带电势还原质子产氢以及足够正的价带电势氧化水产氧.需要指出的是样品的导带电势比样品的导带电势更负,这意味着前者的导带电势更有利于还原质子产氢.霍尔效应测试的结果表明,两种样品均显示出n型半导体的特征,此外样品显示出比样品更快的载流子迁移率以及更高的载流子浓度.因此,两种样品不同的导带位置以及不同的载流子迁移率和载流子浓度很可能是造成两者光催化性能具有显著差异的主要原因.  相似文献   

9.
利用太阳能将水转化为清洁可持续的化学燃料是一种很有前途的策略.光催化水分解制氢技术是有效解决能源可持续发展和环境保护问题的重要技术.CdS由于具有较窄的带隙(2.4 eV)和合适的能带位置而被认为是最有潜力的光催化水产氢催化剂之一.然而,CdS强光的腐蚀性和快速的电子空穴复合导致光催化剂活性低、稳定性差,严重阻碍了CdS光催化剂的广泛应用.为了有效提高光催化产氢活性及稳定性,人们对CdS光催化剂进行了大量改性研究.其中,合理巧妙地加载助催化剂和构造纳米结构CdS被认为是两种极为重要的改性策略,两种策略的有效耦合可以更有效地利用太阳能,实现清洁氢燃料的生成.一方面,各种形貌的CdS光催化剂均已被开发,例如纳米线、纳米棒、纳米片和量子点等.然而,由于制备工艺复杂,在以往的报道中很少有超薄2D CdS纳米片用于光催化产氢.另一方面,由于贵金属(Ag,Pt,Au)的稀缺性和高成本阻碍了其修饰光催化剂的实际应用,所以利用非贵金属助催化剂(MoSx,CuS,Ni3C,WS2,NiS,MXene,CoxP和MoP)修饰CdS提高光催化产氢活性近年来备受关注.对于地球丰富的2D层状助催化剂Cu7S4而言,具有优异的光电催化产氢活性和简单制备方法,但是在光催化产氢领域的应用上未引起足够重视.因此,本文充分利用超薄CdS纳米片以及Cu7S4纳米片各自的独特优势,构建了独特的2D-2D层状异质结,实现了高效协同光催化产氢.我们首先以乙酸镉和硫脲为原料通过一步水热法合成了超薄2D CdS纳米片,并用静电自组装方法制备了CdS/Cu7S4.在可见光下进行了产氢测试,实验结果证实了优化的2D CdS/2%Cu7S4层状异质结在含有Na2S·9H2O和Na2SO3的水溶液中光催化析氢活性最高(27.8 mmol g^-1 h^-1),是原始CdS纳米片(2.6 mmol g^-1 h^-1)的10.69倍.经过4次连续循环反应,CdS/Cu7S4二元复合体系展现出良好的稳定性.为深入探讨高效产氢机制,对纳米级CdS复合材料的光催化物化性能及载流子分离机制进行了表征.通过X射线衍射确定了CdS和CdS/Cu7S4的晶体结构.用高分辨电子显微镜和X射线光电子能谱证实合成了CdS催化剂和Cu7S4助催化剂的超薄纳米片结构且成功复合.用紫外-可见漫反射光谱法对制备的纯CdS和CdS/Cu7S4复合样品的光吸收特性进行了表征.结果表明,在CdS上负载Cu7S4以后,可以明显观察到样品对可见光的吸收能力明显增强.对CdS/Cu7S4进行XPS测试分析,进一步证明了样品中S、Cd和Cu的化学成分和状态.利用PL发射光谱研究了CdS/Cu7S4光催化剂的电荷载流子复合和转移行为.进一步对纯CdS和CdS/Cu7S4复合光催化剂的瞬态光电流响应(I-t曲线)进行了研究,确定了光生载体的分离效率.阻抗是深入研究电荷载流子迁移和界面转移的最有力技术,利用阻抗技术证实CdS/Cu7S4界面高效的载流子分离性能.极化曲线结果表明,加入Cu7S4可以降低CdS的产氢过电势,因此加速表面产氢动力学.由此可见,本文所构建的2D-2D CdS/Cu7S4二元层状异质结可以同时实现光生电子空穴对的快速分离、电子的转移和增加光生电子在表面利用效率,从而最大幅度地提高其光催化水分解产氢活性.本文所采用基于CdS纳米片的2D-2D界面耦合策略可以作为一种通用策略扩展到各种传统半导体纳米片的改性,从而极大地推进高效光催化产氢材料的持续进步.  相似文献   

10.
众所周知,太阳能是一种清洁,可持续的能源.如何更有效地利用太阳能来解决人类面临的能源和环境问题已成为近几十年来科研工作者们的研究热点.半导体光催化技术被认为是人工光合作用的主要发现.光催化技术是解决日益严重的能源短缺和环境污染问题的有效途径,越来越受到人们的关注.氢作为理想的清洁能源,具有燃烧价值高,无污染的优点.光催化制氢技术的应用是最具发展性的制氢方法之一.因此,有效光催化剂的设计和开发显得十分重要.由于光催化析氢反应(HER)主要是半反应,因此必须引入牺牲试剂.同时,光敏剂的存在加速了光催化剂对光的吸收.在这种情况下研究光催化材料的结构和性质之间的关系至关重要,它能指导人们开发低成本,高稳定性,高活性的析氢光催化剂.本文首次成功地合成了以ZIF-9(Co-MOFs)作为前驱体的CoP纳米粒子,并通过简单的化学沉淀法制备了CeVO4光催化剂.深入研究了CoP,CeVO4及其复合催化剂的光催化制氢性能.发现CoP/CeVO4复合催化剂在染料敏化条件下表现出优异的光催化活性.当CoP和CeVO4结合质量比为1:1时,所得样品V1C1的复合光催化活性对于析氢最佳,在5 h内氢产生量达到444.6μmol.由于CeVO4和CoP偶联是一步完成.CeVO4牢固地粘附在CoP颗粒的表面上,形成“小点”到“大点”异质结.XRD,XPS,SEM,EDX和TEM的结果显示,CoP和CeVO4纳米颗粒的形成和复合物的结构.基于对Mott-Schottky曲线,UV-vis漫射光谱,光电流-时间曲线,Tafel曲线,奈奎斯特曲线,线性伏安曲线和稳态/瞬态荧光测量结果表明,CoP/CeVO4高效析氢的原因是CoP和CeVO4复合后存在肖特基势垒,导致能带发生弯曲,并且CoP与CeVO4之间异质结所形成的内建电场能加速电荷转移.此外,CoP和CeVO4之间独特的协同效应为彼此提供了新的析氢活性中心.提高了载流子分离效率,降低了光生载流子复合率.因此,CoP/CeVO4复合催化剂具有优异的光催化析氢活性.本文为过渡金属磷化物光催化剂的电子结构和载流子行为的调控提供了新的策略.  相似文献   

11.
崔言娟  王愉雄  王浩  曹福  陈芳艳 《催化学报》2016,(11):1899-1906
二维层状半导体材料与其体相堆积结构相比表现出独特的性质,有望在纳米材料科学领域取得新的突破.基于对太阳能利用的研究,二维半导体光催化材料引起了研究者的广泛关注.诸多半导体材料已被设计合成二维纳米片结构应用于光催化领域,如 MoS2, WS2, SnS2和TiO2等.石墨相氮化碳(g-C3N4)是一种典型的非金属二维聚合物半导体.二维层状结构的组成使得 g-C3N4纳米片能够表现出优异的光电性质.然而,其合成目前仍然存在很大困难.目前已报道的单层或多层 g-C3N4的制备主要有超声辅助溶剂剥离法、热处理法、插层法和电化学合成法等.但这些方法存在合成复杂和引入结构缺陷等不足.另外,在体相组成中插入孔结构也能够提高 g-C3N4的光催化活性.目前常用的方法主要是模板法.然而,在这些生孔过程中往往引起聚合度降低,增加长程无序度,不利于光生载流子的传输.因此,如果将多孔结构引入 g-C3N4纳米片,同时提高其聚合度结构,将在很大程度上提高其光催化性能.本文利用直接氨气热聚合的方法,将硫氰酸铵进行高温热处理,一步法合成出较高聚合度的多孔 g-C3N4纳米片,在可见光照射下表现出较高的产氢活性和稳定性.采用 X射线衍射(XRD)、红外光谱(FTIR)、荧光光谱(PL)和电子顺磁共振(EPR)等方法对多孔 g-C3N4纳米片结构进行了详细表征.在助催化剂 Pt存在下,采用可见光照射(>420 nm)分解水产氢的方法评价了其光催化性能.结果表明,热处理温度对产物结构及性能具有较大影响. XRD结果表明,在450oC热处理,硫氰酸铵未完全聚合,与前期氮气热处理的结论不同.当热聚合温度上升至500oC,石墨相结构形成.至600oC时,石墨相的层间距缩小,且聚合度没有明显下降.这表明氨气气氛抑制了原料分解,提高了分解聚合温度,同时增加了产物的聚合度. FTIR结果表明,热聚合温度对产物 C–N共轭结构改变不大,但在810 cm–1处的峰位向长波数移动,表明七嗪环单元含量增加,再次证明高的热聚合温度没有造成明显的结构分解,反而促进了聚合结构的形成.扫描电镜与氮气吸脱附分析表明,随着聚合温度升高,产物粒子尺寸变小,形貌呈现层状分布,并伴随多孔状的产生,因此比表面积和孔体积显著增大,吸收带边发生蓝移. PL和 EPR结果表明,聚合温度从500增至600oC,样品光生载流子的复合速率下降,导带离域电子密度增加,从而有利于光催化性能的提高.光解水产氢性能测试表明,聚合温度升高有利于催化剂产氢速率提高;600oC所得样品的产氢速率达340μmol/h.进一步分析表明,产氢速率与比表面积基本成正相关关系,说明层状多孔结构的形成是影响产氢性能的重要因素.经过多轮循环测试,其产氢性能保持稳定而没有显著下降,表明其活性稳定性良好.  相似文献   

12.
Willow branch-shaped MoS2/CdS heterojunctions are successfully synthesized for the first time by a facile one-pot hydrothermal method. The as-prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption measurements, diffuse reflectance spectroscopy, and photoelectrochemical and photoluminescence spectroscopy tests. The photocatalytic hydrogen evolution activities of the samples were evaluated under visible light irradiation. The resulting MoS2/CdS heterojunctions exhibit a much improved photocatalytic hydrogen evolution activity than that obtained with CdS and MoS2. In particular, the optimized MC-5 (5 at.% MoS2/CdS) photocatalyst achieved the highest hydrogen production rate of 250.8 μmol h-1, which is 28 times higher than that of pristine CdS. The apparent quantum efficiency (AQE) at 420 nm was 3.66%. Further detailed characterizations revealed that the enhanced photocatalytic activity of the MoS2/CdS heterojunctions could be attributed to the efficient transfer and separation of photogenerated charge carriers resulting from the core-shell structure and the close contact between MoS2 nanosheets and CdS single-crystal nanorods, as well as to increased visible light absorption. A tentative mechanism for photocatalytic H2 evolution by MoS2/CdS heterojunctions was proposed. This work will open up new opportunities for developing more efficient photocatalysts for water splitting.  相似文献   

13.
PtPd bimetallic alloy nanoparticle (NP)-modified graphitic carbon nitride (g-C3N4) nanosheet photocatalysts were synthesized via chemical deposition precipitation. Characterization of the photocatalytic H2 evolution of the g-C3N4 nanosheets shows that it was significantly enhanced when PtPd alloy NPs were introduced as a co-catalyst. The 0.2 wt% PtPd/g-C3N4 composite photocatalyst gave a maximum H2 production rate of 1600.8 μmol g–1 h–1. Furthermore, when K2HPO4 was added to the reaction system, the H2 production rate increased to 2885.0 μmol g–1 h–1. The PtPd/g-C3N4 photocatalyst showed satisfactory photocatalytic stability and was able to maintain most of its photocatalytic activity after four experimental photocatalytic cycles. In addition, a possible mechanism for the enhanced photocatalytic activity was proposed and verified by various photoelectric techniques. These results demonstrate that the synergistic effect between PtPd and g-C3N4 helps to greatly improve the photocatalytic activity of the composite photocatalyst.  相似文献   

14.
The NiS/CQDs nanocomposite (CQDs represents carbon quantum dots), with a mass ratio of NiS/CQDs to be 1.19:1 based on the ICP result, was obtained via a facile hydrothermal method from a mixture of CQDs, Ni(OAc)2 and Na2S. The self-assembly of ZnIn2S4 microspheres on the surface of NiS/CQDs was realized under microwave conditions to obtain a ternary NiS/CQDs/ZnIn2S4 nanocomposite. The as-obtained NiS/CQDs/ZnIn2S4 nanocomposite was fully characterized, and its photocatalytic hydrogen evolution under visible light irradiation was investigated. The ternary NiS/CQDs/ZnIn2S4 nanocomposite showed superior photocatalytic activity for hydrogen evolution than ternary CQDs/NiS/ZnIn2S4, which was obtained by deposition of NiS in the preformed CQDs/ZnIn2S4. The superior photocatalytic performance of ternary NiS/CQDs/ZnIn2S4 is ascribed to the introduction of CQDs, which act as a bridge to promote the vectorial transfer of photo-generated electrons from ZnIn2S4 to NiS. This result suggests that the rational design and fabrication of ternary CQDs-based systems are important for the efficient photocatalytic hydrogen evolution. This study provides a strategy for developing highly efficient noble-metal-free photocatalysts for hydrogen evolution using CQDs as a bridge to promote the charge transfer in the nanocomposite.  相似文献   

15.
g-C3N4是一种新型的稳定的半导体光催化材料,它可以通过热缩聚法、固相反应法、电化学沉积法和溶剂热法等制备.g-C3N4禁带宽度约为2.7 eV,吸收边在460 nm左右,具有合适的导带位置,可用作可见光响应制氢的光催化材料,但在实际应用中g-C3N4光催化性能较低,其原因可归纳为:(1)g-C3N4在吸收光子产生电子和空穴对后,光生载流子的传输速率较慢,容易在体相或表面复合,致使g-C3N4的量子效率较低;(2)材料在合成过程中易于结块,使g-C3N4的比表面积远小于理论值,严重削弱了g-C3N4光催化材料的制氢性能.目前已有很多关于g-C3N4改性的报道,但一些方法对材料的处理过程耗时较长或者合成过程较难控制.用助剂改性是提高光催化制氢活性的半导体材料的主要策略之一.合适的助剂可改进电荷分离和加速表面催化反应,从而提高光催化剂的制氢活性.虽然稀有金属或贵金属,如铂、金和银可大大提高g-C3N4的制氢速率,但由于其昂贵和稀缺性,因而应用严重受限.因此,开发成本低、储量丰富、高性能助剂来进一步提高制氢性能具有重要意义.NiS2来源丰富、价格低廉.它可在酸性和碱性的环境保持相对较高的稳定性,且其表面电子结构表现出类金属特性.但它较难与半导体光催化剂形成强耦合和界面,通常需要水热等条件下合成.实验表明,g-C3N4表面存在着大量的含氧官能团及未缩合的氨基基团,为表面接枝提供了丰富的反应活性位点,因而可利用g-C3N4表面均匀分布的含氧官能团等和Ni2+结合,再原位与S2?反应,从而在g-C3N4上负载耦合紧密的NiS2助剂,进一步提高复合材料的光催化制氢活性.本文采用低温浸渍法制备了NiS2/g-C3N4光催化剂.NiS2助剂在温和的反应条件下与g-C3N4光催化剂复合,可以防止催化剂结构的破坏,同时使得助剂均匀地分散,并紧密结合在催化剂表面,从而大大提高光催化剂的制氢性能.该样品制备过程为:(1)通过水热处理制备含氧官能团和较大比表面积的g-C3N4;(2)添加Ni(NO3)2前驱体后,Ni2+离子由于静电作用紧密吸附在g-C3N4表面;(3)在80oC加入硫代乙酰胺(TAA),可在g-C3N4的表面紧密和均匀形成助剂NiS2.表征结果证实成功制备NiS2纳米粒子修饰的g-C3N4光催化剂.当Ni含量为3 wt%,样品表现出最大的制氢速率(116μmol h?1 g?1),明显高于纯g-C3N4.此外,对NiS2/g-C3N4(3 wt%)的样品进行光催化性能的循环测试结果表明:该样品在可见光照射下可以保持一个稳定的、有效的光催化制氢性能.根据实验结果,我们提出一个可能的光催化机理:即NiS2促进了物质表面快速转移光生电子,使g-C3N4光生电荷有效分离.基于NiS2具有成本低和效率高的优点,因而有望广泛应用于制备高性能的光催化材料.  相似文献   

16.
利用光催化反应制取氢气是满足未来能源可持续利用的一个很有效的方法.然而,如何去开发和利用高效且稳定的非金属光催化剂用于产氢反应是目前所面临的一个巨大的挑战.最近,非金属纳米碳基材料由于其诸多优点而吸引了人们广泛的关注,比如价格低廉、环境友好和良好的稳定性等.另外,石墨烯量子点由于具有很好的水溶性、低毒性,良好的生物兼容性和很好的光学稳定性等优点而被当作是一种能够替代传统量子点的很有前途的材料.除此之外,石墨烯量子点的带隙还可以通过控制其颗粒大小和其表面所带的官能团来进行灵活调控.另一方面,金属磷化物(磷化镍、磷化钴等)已经被证实了是很好的水分解制氢的非贵金属助催化剂,它们可以加快光生电子和空穴的分离,从而提高光催化活性.本文利用非金属光敏剂石墨烯量子点与非贵金属助催化磷化镍进行耦合制备复合光催化剂,实现了在可见光照射下进行光催化制氢.在最优条件下,复合光催化剂的产氢速率为空白石墨烯量子点的94倍,甚至与在空白量子点上负载1.0wt%Pt的产氢速率相当.产氢速率的大幅度提升可能是由于在石墨烯的量子点和磷化镍之间形成了半导体–金属接触界面,从而更有效地促进了光生载流子的传输过程.石墨烯量子点本身有着很好的水溶性,从而利用机械搅拌的方法与磷化镍进行耦合,并在可见光下进行产氢反应.本文采用红外光谱(FTIR)、透射电镜(TEM)、紫外可见光谱(UV-Vis)和荧光光谱(PL)等表征手段研究了空白量子点表面所带的官能团、尺寸大小和光学性能.采用TEM和PL等表征手段来研究复合光催化剂的形貌和产氢性能提高的原因.对于空白量子点,FTIR结果表明,其表面带有–OH等官能团;TEM结果表明,它的尺寸大小大概在3.6±0.5 nm;UV-Vis结果表明,其在可见光区域有着很强的光吸收;PL结果表明,其在波长约为540 nm处有着很强的吸收峰,所对应的带隙约为2.3 eV.对于复合光催化剂,TEM测试结果表明石墨烯量子点在磷化镍上随机分布;从PL结果可见,复合光催化剂的荧光强度明显降低,说明了光生电子从量子点到磷化镍的有效转移,这也是光催化活性提高的重要原因  相似文献   

17.
虽然传统的化石燃料依然能够满足当今快速工业化发展对能源的巨大需求,但其固有的不可再生性及其燃烧产物对环境的污染,严重阻碍了其在生产和生活中的广泛使用.因此,可持续清洁能源开发的研究已快速成为人类研究的热点.氢是一种具备高热值、可持续等优点的清洁能源,也兼备成本及污染低等优势.甲酸(FA)以其无毒、低成本、氢含量高等优点,是一种潜在的热门储氢材料,而可见光占太阳光谱的43%左右.因此,开发高效可见光催化剂驱动FA制氢将是一种应对能源危机的有效途径.许多传统光催化剂已被用于可见光催化FA制氢,但制备成本高、过程复杂、条件苛刻及可见光响应差、稳定性和选择性差、有毒气体释放等缺点严重限制了其光催化性能.光催化研究关键之一是实现光生电荷的高效率分离和转移,从而光催化剂光催化性能的提高.Zn3In2S6(ZIS6)因具有强可见光吸收、稳定性好及环保等特点正迅速成为光催化剂半导体的“明星”,常与助催化剂(如贵金属Pt、Au、Pd等)复合形成异质结以促进光生载流子分离和提高其光催化活性,但制备成本高等因素却严重限制其发展.将成本低、化学稳定性好的MoS2与其它半导体耦合也是提高半导体光催化剂性能的有效手段之一,但高温、热处理时间长及有毒气体释放等却成了制约因素.本文选用价格低廉的反应前驱体,采用简单的一锅法水将MoS2紧密地结合到ZIS6的表面,热制备了一系列含有不同质量百分比MoS2的MoS2/Zn3In2S6(MoS2/ZIS6)复合光催化剂,有效降低了制备成本和有毒气体(H2S)的释放.结果表明,可见光照射下(λ>400 nm),MoS2的引入可大大提高ZIS6光生电荷分离效率及制氢活性,尤其以0.5%MoS2/ZIS6性能最优,光催化制氢速率高达74.25μmol·h^-1(量子效率约2.9%),约ZIS6的4.3倍(17.47μmol·h^-1).XRD结果表明,MoS2/ZIS6样品中含有无定型MoS2紧密固定在晶型ZIS6片状结构表面,未影响ZIS6晶型,SEM表征也证实了此结果.随后的TEM、HRTEM及EDX结果也进一步确认了各组成元素的存在和分布.采用XPS对元素化学环境进行了分析,通过S和Mo元素的成键能变化证实了MoS2和ZIS6间的紧密接触.UV-Vis DRS测试表明,MoS2/ZIS6可以利用可见光在适当带隙的基础上进行光催化制氢.通过BET、PL和电化学技术研究了比表面积、光生电荷分离和传递速率等对光催化性能的影响.最终,结合上述表征结果成功阐述了可见光驱动FA制氢的反应机理.  相似文献   

18.
Photocatalytic H2 production via water splitting in a noble-metal-free photocatalytic system has attracted much attention in recent years. In this study, noble-metal-free Ni3N was used as an active cocatalyst to enhance the activity of g-C3N4 for photocatalytic H2 production under visible-light irradiation (λ > 420 nm). The characterization results indicated that Ni3N nanoparticles were successfully loaded onto the g-C3N4, which accelerated the separation and transfer of photogenerated electrons and resulted in enhanced photocatalytic H2 evolution under visible-light irradiation. The hydrogen evolution rate reached ~305.4 μmol h?1 g?1, which is about three times higher than that of pristine g-C3N4, and the apparent quantum yield (AQY) was ~0.45% at λ = 420. Furthermore, the Ni3N/g-C3N4 photocatalyst showed no obvious decrease in the hydrogen production rate, even after five cycles under visible-light irradiation. Finally, a possible photocatalytic hydrogen evolution mechanism for the Ni3N/g-C3N4 system is proposed.  相似文献   

19.
This communication presents our recent results that the activity of photocatalytic H2 production can be significantly enhanced when a small amount of MoS2 is loaded on CdS as cocatalyst. The MoS2/CdS catalysts show high rate of H2 evolution from photocatalytic re-forming of lactic acid under visible light irradiation. The rate of H2 evolution on CdS is increased by up to 36 times when loaded with only 0.2 wt % of MoS2, and the activity of MoS2/CdS is even higher than those of the CdS photocatalysts loaded with different noble metals, such as Pt, Ru, Rh, Pd, and Au. The junction formed between MoS2 and CdS and the excellent H2 activation property of MoS2 are supposed to be responsible for the enhanced photocatalytic activity of MoS2/CdS.  相似文献   

20.
The photocatalytic ability of ZnO is improved through the addition of flower-like Bi2WO6 to prepare a Bi2WO6/ZnO composite with visible light activity. The composite is characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy with UV–vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy and N2 adsorption-desorption isotherms. After modification, the band gap energy of Bi2WO6/ZnO is reduced from 3.2 eV for ZnO to 2.6 eV. Under visible light irradiation, the Bi2WO6/ZnO composite shows an excellent photocatalytic activity for degrading methylene blue (MB) and tetracycline. The photo-degradation efficiencies of (0.3:1) Bi2WO6/ZnO for MB and tetracycline are approximately 246 and 4500 times higher than those of bare ZnO, respectively, and correspondingly, the photo-degradation rates for the two pollutants are approximately 120 and 200 times higher than those with bare ZnO, respectively. Moreover, the photocatalyst of (0.3:1) Bi2WO6/ZnO exhibits a higher transient photocurrent density of approximately 4.5 μA compared with those of bare Bi2WO6 and ZnO nanoparticles. The successful recombination of Bi2WO6 and ZnO enhances the photocatalytic activity and reduces the band gap energy of ZnO, which can be attributed to the effective separation of electron–hole pairs. Active species trapping experiments display that [O2]? is the major species involved during photocatalysis rather than ?OH and h+. This study provides insight into designing a meaningful visible-light-driven photocatalyst for environmental remediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号