首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of polyatomic primary ions is a strongly developing branch of static secondary ion mass spectrometry (S-SIMS), since these projectiles allow a significant increase in the secondary ion yields to be achieved. However, the different limitations and possibilities of certain polyatomic primary ions for use on specific functional classes of samples are still not completely known. This paper compares the use of monoatomic and polyatomic primary ions in S-SIMS for thin layers of polylactic acid (PLA), obtained by spin-coating solutions on silicon wafers. Bombardment with Ga+, Xe+ and SF5+ primary ions allowed the contribution of the projectile mass and number of atoms in the gain in ion yield and molecular specificity (relative importance of high m/z and low m/z signals) to be assessed. Samples obtained by spin-coating solutions with increasing concentration showed that optimal layer thickness depended on the primary ion used. In comparison with the use of Ga+ projectiles, the yield of structural ions increased by a factor of about 1.5 to 2 and by about 7 to 12 when Xe+ and SF5+ primary ion bombardment were applied, respectively. A detailed fragmentation pattern was elaborated to interpret ion signal intensity changes for different projectiles in terms of energy deposition and collective processes in the subsurface, and the internal energy of radical and even-electron precursor ions.  相似文献   

2.
Organic carbocyanine dye coatings have been analyzed by time-of-flight static secondary ion mass spectrometry (TOF-S-SIMS) using three types of primary ions: Ga(+) operating at 25 keV, and Xe(+) and SF(5) (+) both operating at 9 keV. Secondary ion yields obtained with these three primary ions have been compared for coatings with different layer thickness, varying from (sub)-monolayer to multilayers, on different substrates (Si, Ag and AgBr cubic microcrystals). For (sub)-monolayers deposited on Ag, Xe(+) and SF(5) (+) primary ions generate similar precursor ion intensities, but with Ga(+) slightly lower precursor ion intensities were obtained. Thick coatings on Ag as well as mono- and multilayers on Si produce the highest precursor and fragment ion intensities with the polyatomic primary ion. The yield difference between SF(5) (+) and Xe(+) can reach a factor of 6. In comparison with Ga(+), yield enhancements by up to a factor of 180 are observed with SF(5) (+). For the mass spectrometric analysis of dye layers on AgBr microcrystals, SF(5) (+) again proves to be the primary ion of choice.  相似文献   

3.
Static secondary ion mass spectrometry (S-SIMS) is one of the potentially most powerful and versatile tools for the analysis of surface components at the monolayer level. Current improvements in detection limit (LOD) and molecular specificity rely on the optimisation of the desorption-ionisation (DI) process. As an alternative to monoatomic projectiles, polyatomic primary ion (P.I.) bombardment increases ion yields non-linearly. Common P.I. sources are Ga+ (liquid metal ion gun (LMIG), SF5+ (electron ionisation) and the newer Au(n)+, Bi(n)q+ (both LMIG) and C60+ (electron ionisation) sources. In this study the ion yield improvement obtained by using the newly developed ion sources is assessed. Two dyes (zwitterionic and/or thermolabile polar functionalities on a largely conjugated backbone) were analysed as a thin layer using Ga+, SF5+, C60+, Bi+, Bi3(2+) and Bi5(2+) projectiles under static conditions. The study aims at evaluating the improvement in LOD, useful and characteristic yield and molecular specificity. The corrected total ion count values for the different P.I. sources are compared for different instruments to obtain a rough estimate of the improvements. Furthermore, tentative ionisation and fragmentation schemes are provided to describe the generation of radical and adduct ions. Characteristic ion yields are discussed for the different P.I. sources. An overview of the general appearances of the mass spectra obtained with the different P.I. sources is given to stress the major improvement provided by polyatomic P.I.s in yielding information at higher m/z values.  相似文献   

4.
A systematic study was performed to identify the origin of surprisingly high analyte-to-matrix yield ratios recently observed in time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis of oligo- and polypeptides mixed in matrices of alpha-cyano-4-hydroxycinnamic acid (4HCCA). Several sets of samples of porcine insulin in 4HCCA (1:3100 molar) were prepared from liquid solutions by a nebuliser technique, with more than one order of magnitude variation in sprayed material (substrate silicon). Following different periods of storage in air and/or vacuum as well as exposure to high-purity water, TOF-SIMS analysis was performed under oblique impact of 22 keV SF5+. Treatment with water involved either deposition of a droplet covering the whole sample for times between 1 and 20 min or spraying with water in droplet equivalent quantities. The analyte and matrix molecules were detected as protonated molecules (insulin also in doubly protonated form). Even the as-prepared samples usually showed insulin-to-4HCCA yield ratios exceeding the molar ratio of the mixed material. Upon ageing in vacuum the matrix ion yields remained constant but the analyte yields decreased, partly due to break-up of intrachain disulfide bonds. Water treatment resulted in a pronounced decrease in the 4HCCA yield, typically by a factor of five, in parallel with an increase of the insulin yield, by up to a factor of four. Evidence is provided that these changes occur concurrently with a partial dissolution of 4HCCA at the sample surface. The enhanced insulin yield was not correlated with the Na+ yield. The typically 20-fold increase in the insulin-to-4HCCA yield ratio, generated by water exposure of the samples, provides the explanation for the high yield ratios observed previously with water-treated samples. Spraying with water or repeated exposure to water droplets caused a pronounced degradation of the insulin parent yields in combination with an increasing appearance of signals due to the B- and A-chains of insulin. To clarify the issue of surface segregation, a few samples were prepared by spraying acetone-diluted solutions of insulin on previously deposited layers of 4HCCA. Whereas the insulin yields from as-prepared samples were rather low, the yields observed after water treatment were comparable with those observed with samples of insulin in 4HCCA. The results suggest that a large amount of insulin is present at the surface of samples prepared from liquid mixtures of insulin in 4HCCA. With both methods of sample preparation, however, high secondary ion yields of insulin were only obtained after exposure of the samples to water. The chemical changes responsible for this beneficial effect still need to be identified.  相似文献   

5.
Static secondary ion mass spectrometry (S-SIMS) emerges as one of the most adequate methods for the surface characterisation of polymers with an information depth of essentially one monolayer. The continuing search for increased analytical sensitivity and specificity has led to exploring the use of polyatomic primary ions as an alternative to the traditionally applied monoatomic projectiles. As part of a systematic investigation on polyatomic bombardment of organic and inorganic solids, this paper focuses on selected polyesters. Mass spectra and ion yields are compared for layers deposited on silicon wafers by spincoating solutions with different concentrations of poly(epsilon-caprolactone) (PCL), poly(butylene adipate) (PBA) and poly(ethylene adipate) (PEA). Accurate mass measurements have been used to support the assignment of the ions and link the composition of the detected ions to the analyte structure. Use of polyatomic projectiles increases the yield of structural ions with a factor of +/-15, +/-30 and +/-10 for PCL, PBA and PEA, respectively, in comparison to bombardment with Ga+ primary ions, while the molecular specificity is improved by the detection of additional high m/z ions.  相似文献   

6.
A new type of cluster secondary ion mass spectrometry (SIMS), named electrospray droplet impact (EDI), has been developed in our laboratory. In general, rather strong negative ions as well as positive ions can be generated by EDI compared with conventional SIMS. In this work, various aspects of ion formation in EDI are investigated. The Brønsted bases (proton acceptor) and acids (proton donor) mixed in the analyte samples enhanced the signal intensities of deprotonated molecules (negative ions) and protonated molecules (positive ions), respectively, for analytes. This suggests the occurrence of heterogeneous proton transfer reactions (i.e. M + M′ → [M+H]+ + [M′? H]?) in the shockwave‐heated selvedge of the colliding interface between the water droplet and the solid sample deposited on the metal substrate. EDI‐SIMS shows a remarkable tolerance to the large excess of salts present in samples. The mechanism for desorption/ionization in EDI is much simpler than those for MALDI and SIMS because only very thin sample layers take part in the shockwave‐heated selvedge and complicated higher‐order reactions are largely suppressed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The negative ion electrospray ionization (ESI) mass spectra of a series of dicarboxylic acids, a pair of isomeric (cis/trans) dicarboxylic acids and two pairs of isomeric (positional) substituted benzoic acids, including a pair of hydroxybenzoic acids, were recorded in the presence of halide ions (F(-), Cl(-), Br(-) and I(-)). The ESI mass spectra contained [M--H](-) and [M+X](-) ions, and formation of these ions is found to be characteristic of both the analyte and the halide ion used. The analytes showed a greater tendency to form adduct ions with Cl(-) under ESI conditions compared with the other halide ions used. The isomeric compounds yielded distinct spectra by which the isomers could be easily distinguished. The collision-induced dissociation mass spectra of [M+X](-) ions reflected the gas-phase basicities of both the halide ion and [M--H](-) ion of the analyte. However, the relative ordering of gas-phase basicities of all analyte [M--H](-) and halide ions could not account for the dominance of chloride ion adducts in ESI mass spectra of the analytes mixed with equimolar quantities of the four halides.  相似文献   

8.
Atmospheric pressure (AP) matrix‐assisted laser desorption/ionization (MALDI) is known to suffer from poor ion transfer efficiencies as compared to conventional vacuum MALDI (vMALDI). To mitigate these issues, a new AP‐MALDI ion source utilizing a coaxial gas flow was developed. Nitrogen, helium, and sulfur hexafluoride were tested for their abilities as ion carriers for a standard peptide and small drug molecules. Nitrogen showed the best ion transport efficiency, with sensitivity gains of up to 1900% and 20% for a peptide standard when the target plate voltage was either continuous or pulsed, respectively. The addition of carrier gas not only entrained the ions efficiently but also deflected background species and declustered analyte–matrix adducts, resulting in higher absolute analyte signal intensities and greater signal‐to‐noise (S/N) ratios. With the increased sensitivity of pneumatically assisted (PA) AP‐MALDI, the limits of detection of angiotensin I were 20 or 3 fmols for continuous or pulsed target plate voltage, respectively. For analyzing low‐mass analytes, it was found that very low gas flow rates (0.3–0.6 l min?1) were preferable owing to increased fragmentation at higher gas flows. The analyte lability, type of gas, and nature of the extraction field between the target plate and mass spectrometer inlet were observed to be the most important factors affecting the performance of the in‐line PA‐AP‐MALDI ion source. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A new liquid metal ion gun (LMIG) filled with bismuth has been fitted to a time-of-flight-secondary ion mass spectrometer (TOF-SIMS). This source provides beams of Bi(n)q+ clusters with n = 1-7 and q = 1 and 2. The appropriate clusters have much better intensities and efficiencies than the Au3+ gold clusters recently used in TOF-SIMS imaging, and allow better lateral and mass resolution. The different beams delivered by this ion source have been tested for biological imaging of rat brain sections. The results show a great improvement of the imaging capabilities in terms of accessible mass range and useful lateral resolution. Secondary ion yields Y, disappearance cross sections sigma, efficiencies E = Y/sigma , and useful lateral resolutions deltaL have been compared using the different bismuth clusters, directly onto the surface of rat brain sections and for several positive and negative secondary ions with m/z ranging from 23 up to more than 750. The efficiency and the imaging capabilities of the different primary ions are compared by taking into account the primary ion current for reasonable acquisition times. The two best primary ions are Bi3+ and Bi5(2+). The Bi3+ ion beam has a current at least five times larger than Au3+ and therefore is an excellent beam for large-area imaging. Bi5(2+) ions exhibit large secondary ions yields and a reasonable intensity making them suitable for small-area images with an excellent sensitivity and a possible useful lateral resolution <400 nm.  相似文献   

10.
A cluster-based chemical ionization method has been developed that produces protonated molecular ions from molecules introduced through a supersonic molecular beam interface. Mixed clusters of the analyte and a clustering agent (water or methanol) are produced in the expansion region of the beam, and are subsequently ionized by “fly through” electron impact (EI) ionization, which results in a mass spectrum that is a combination of protonated molecular ion peaks together with the conventional EI fragmentation pattern. The technique is presented and discussed as a tool complementary to electron impact ionization in supersonic molecular beams. Surface-induced dissociation on a rhenium oxide surface is also applied to simplify the mass spectra of clusters and reveal the analyte spectrum. The high gas flow rates involved with the supersonic molecular beam interface that enable the easy introduction of the clustering agents also have been used to introduce deuterating agents. An easy-to-use, fast, and routine on-line deuterium exchange method was developed to exchange active hydrogens (NH, OH). This method, combined with electron impact ionization, is demonstrated and discussed in terms of the unique information available through the EI fragmentation patterns, its ability to help in isomer identification, and possible applications with fast gas chromatography-mass spectrometry in supersonic molecular beams.  相似文献   

11.
In context to the ion induced surface nanostructuring of metals and their burrowing in the substrates, we report the influence of Xe and Kr ion‐irradiation on Pt:Si and Ag:Si thin films of ~5‐nm thickness. For the irradiation of thin films, several ion energies (275 and 350 keV of Kr; 450 and 700 keV of Xe) were chosen to maintain a constant ratio of the nuclear energy loss to the electronic energy loss (Sn/Se) in Pt and Ag films (five in present studies). The ion‐fluence was varied from 1.0 × 1015 to 1.0 × 1017 ions/cm2. The irradiated films were characterized using Rutherford backscattering spectroscopy (RBS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The AFM and SEM images show ion beam induced systematic surface nano‐structuring of thin films. The surface nano‐structures evolve with the ion fluence. The RBS spectra show fluence dependent burrowing of Pt and Ag in Si upon the irradiation of both ion beams. At highest fluence, the depth of metal burrowing in Si for all irradiation conditions remains almost constant confirming the synergistic effect of energy losses by the ion beams. The RBS analysis also shows quite large sputtering of thin films bombarded with ion beams. The sputtering yield varied from 54% to 62% by irradiating the thin films with Xe and Kr ions of chosen energies at highest ion fluence. In the paper, we present the experimental results and discuss the ion induced surface nano‐structuring of Pt and Ag and their burrowing in Si. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The ion bombardment-induced release of particles from a metal surface is investigated using energetic fullerene cluster ions as projectiles. The total sputter yield as well as partial yields of neutral and charged monomers and clusters leaving the surface are measured and compared with corresponding data obtained with atomic projectile ions of similar impact kinetic energy. It is found that all yields are enhanced by about one order of magnitude under bombardment with the C60+ cluster projectiles compared with Ga+ ions. In contrast, the electronic excitation processes determining the secondary ion formation probability are unaffected. The kinetic energy spectra of sputtered particles exhibit characteristic differences which reflect the largely different nature of the sputtering process for both types of projectiles. In particular, it is found that under C60+ impact (1) the energy spectrum of sputtered atoms peaks at significantly lower kinetic energies than for Ga+ bombardment and (2) the velocity spectra of monomers and dimers are virtually identical, a finding which is in pronounced contrast to all published data obtained for atomic projectiles. The experimental findings are in reasonable agreement with recent molecular dynamics simulations.  相似文献   

13.
We report a fast, sensitive, real-time method to measure monobromamine, monochloramine and dichloramine using selected ion flow tube mass spectrometry (SIFT-MS). Relative rate coefficients and product distributions are reported for the reagent ions H3O+ and O2 +. Rapid reactions with the haloamines were observed with H3O+ and O2 + but no fast reaction was found with NO+. A slow reaction between NO+ and dichloramine was observed. We demonstrate the feasibility of determining these compounds in a single human breath for which the limit of detection is approaching 10 parts per billion (ppb). We also report preliminary measurements of these compounds in the breath of individuals where the concentrations of bromamine and chloramine ranged from 10 to 150 ppb.  相似文献   

14.
Secondary ion mass spectra obtained by [Xe]+ bombardment are compared with those obtained by [Ar]+ bombardment. Although [Ar]+ ions are commonly used as primary ions in secondary ion mass spectrometry for organic compounds, [Xe]+ ions seem better as primary ions because they give a larger sputtering yield for a metal substrate than [Ar]+ ions. Cationized molecular intensities of sucrose, raffinose and stachyose, and quasimolecular ion intensities of tuftsin and eledoisin related peptide are investigated using [Xe]+ and [Ar]+ bombardments. The observed molecular species are 2–4 times more intense for [Xe]+ bombardment than for [Ar]+ bombardment, although the secondary ion mass spectra are almost the same in both cases.  相似文献   

15.
The high resolution, mass range and sensitivity of Fourier transform mass spectrometry (FTMS) suggest that it could be a valuable tool for the quantitative analysis of biomolecules. To determine the applicability of electrospray ionization combined with FTMS to the quantitation of biomolecules in multi-component samples, mixtures of varying compositions and concentrations of cytochrome c, angiotensin II, insulin and chicken egg white lysozyme were examined. The instrument used has an electrospray source with a hexapole trap to accumulate ions for injection into an ion cyclotron resonance mass analyzer. Linear responses for single component samples of angiotensin II and insulin were in the range 0.031-3 microM and those of both cytochrome c and lysozyme were between 0.031 and 1 microM. In examining various mixtures of the proteins with angiotensin II, it was found that the presence of the large molecules suppresses the signal of the smaller molecules. This is suggested to be a result of ion-ion interactions producing selective ion loss from either the hexapole trap or the ion cyclotron resonance mass analyzer trap. More massive, more highly charged ions can collisionally transfer large amounts of translational energy to smaller, less highly charged ions, ejecting the smaller ions from the trap. Mass discrimination effects resulting from the trapping voltage were also examined. It was found that relative signal intensities of ions of different masses depend on trapping voltage for externally produced ions. The effect is most significant for spectra including masses that differ by 30% or more. This suggests that for quantitation all samples and standards be run at a constant trapping potential.  相似文献   

16.
A method for the extraction and analysis of tocopherols from serum using coordinated ion spray (CIS) mass spectrometry was developed and tested. The tocopherols were extracted from serum and analyzed by direct infusion into the mass spectrometer, bypassing the need for a liquid chromatography step. CIS is a method for improving the ionization efficiency of non-polar compounds by adding metal ions to the electrospray solvent. The non-polar analytes appear as metal adducts in the resulting mass spectrum. Silver was used as the metal ion for the CIS, causing analyte masses to be increased by 107 and 109 Da from the two main silver isotopes. Vitamin E succinate was added to the samples before extraction and was used as an internal standard to compensate for any variations in the extraction efficiency or mass spectrometric response. alpha-Tocopherol and an ether-linked analogue known as alpha-TEA were analyzed in concentrations from 1.25-40 microg/mL (1.9-60 pg consumed). The response curve was constructed by comparing the response of the analytes to the internal standard and gave linear results with r2 values greater than 0.98. This new method was shown to be sensitive, reproducible, fast and required very small amounts of analyte.  相似文献   

17.
We demonstrate operation of the first cryogenic 2D linear ion trap (LIT) with mass‐selective capabilities. This trap presents a number of advantages for infrared ion “action” spectroscopy studies, particularly those employing the “tagging/messenger” spectroscopy approach. The high trapping efficiencies, trapping capacities, and low detection limits make 2D LITs a highly suitable choice for low‐concentration analytes from scarce biological samples. In our trap, ions can be cooled down to cryogenic temperatures to achieve higher‐resolution infrared spectra, and individual ions can be mass selected prior to irradiation for a background‐free photodissociation scheme. Conveniently, multiple tagged analyte ions can be mass isolated and efficiently irradiated in the same experiment, allowing their infrared spectra to be recorded in parallel. This multiplexed approach is critical in terms of increasing the duty cycle of infrared ion spectroscopy, which is currently a key weakness of the technique. The compact design of this instrument, coupled with powerful mass selection capabilities, set the stage for making cryogenic infrared ion spectroscopy viable as a bioanalytical tool in small molecule identification.  相似文献   

18.
Transmission mode ion/ion proton transfer reactions in a linear ion trap   总被引:1,自引:1,他引:0  
A new method is described for effecting ion/ion proton transfer reactions that involves storage of analyte ions while oppositely charged ions are transmitted through the stored ion population. In this approach, the products are captured and stored in the linear ion trap for subsequent mass analysis. Charge reduction of multiply charged protein ions is used as an example to illustrate the analytical usefulness of this method. In another variation of the transmission mode ion/ion reaction approach, two charge inversion experiments, implemented by passing analyte ions through a population of multiply charged reagent ions in a LIT, are also demonstrated. A pulsed dual ion source approach coupled with a hybrid triple quadrupole/linear ion trap instrument was used to demonstrate these two methods. The results for ion/ion reactions implemented using these so-called "transmission mode" experiments were comparable to those acquired using the more conventional mutual storage mode, both in terms of efficiency and information content of the spectra. An advantage of transmission mode experiments compared with mutual storage mode experiments is that they do not require any specialized measures to be taken to enable the simultaneous storage of oppositely charged ions.  相似文献   

19.
Bi cluster time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a useful method for evaluating organic surfaces. However, its ability to detect large molecules is limited. One of the problems is that the sensitivities of macromolecules are lower than those of small molecules because larger molecules tend to exhibit lower ionization efficiencies and/or higher probabilities of fragmentation. Matrix-enhanced (ME)-SIMS is a sensitivity enhancement technique for intact molecular ions. The crystal structure of a mixed substance composed of an analyte and a matrix is known to affect the sensitivity of the analysis target. In this study, the effect of cocrystallization, which occurs due to the presence of bile acid, on the molecular-ion sensitivity was investigated using Bi cluster TOF-SIMS. Biological phospholipids and bile acids, which exhibit surfactant behaviors, were selected as the evaluated molecules and additives, respectively. The mass spectra indicated that the secondary-ion yields of phospholipids with bile acid were substantially greater than those of the pristine lipid. Specifically, samples with an analyte/bile acid ratio of 1:100 achieved approximately 60–100-fold sensitivity enhancement of [M + H]+ and [2M + H]+ molecular ions than the sensitivity achieved with the pristine samples. In the evaluation of molecular distribution, higher signal counts of intact ions were obtained from the cocrystallization area, although less-fragmented ions were emitted from these regions. Consequently, the results indicate that the cocrystallization due to the presence of bile acid provides an effective crystal structure for facilitating emission of larger molecules.  相似文献   

20.
Atomic masses and isotopic abundances are independent and complementary properties for discriminating among ion compositions. The number of possible ion compositions is greatly reduced by accurately measuring exact masses of monoisotopic ions and the relative isotopic abundances (RIAs) of the ions greater in mass by +1 Da and +2 Da. When both properties are measured, a mass error limit of 6-10 mDa (< 31 ppm at 320 Da) and an RIA error limit of 10% are generally adequate for determining unique ion compositions for precursor and fragment ions produced from small molecules (less than 320 Da in this study). 'Inherent interferences', i.e., mass peaks seen in the product ion mass spectrum of the monoisotopic [M+H]+ ion of an analyte that are -2, -1, +1, or +2 Da different in mass from monoisotopic fragment ion masses, distort measured RIAs. This problem is overcome using an ion correlation program to compare the numbers of atoms of each element in a precursor ion to the sum of those in each fragment ion and its corresponding neutral loss. Synergy occurs when accurate measurement of only one pair of +1 Da and +2 Da RIAs for the precursor ion or a fragment ion rejects all but one possible ion composition for that ion, thereby indirectly rejecting all but one fragment ion-neutral loss combination for other exact masses. A triple-quadrupole mass spectrometer with accurate mass capability, using atmospheric pressure chemical ionization (APCI), was used to measure masses and RIAs of precursor and fragment ions. Nine chemicals were investigated as simulated unknowns. Mass accuracy and RIA accuracy were sufficient to determine unique compositions for all precursor ions and all but two of 40 fragment ions, and the two corresponding neutral losses. Interrogation of the chemical literature provided between one and three possible compounds for each of the nine analytes. This approach for identifying compounds compensates for the lack of commercial ESI and APCI mass spectral libraries, which precludes making tentative identifications based on spectral matches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号