首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In magnetic superconductors a moving vortex lattice is accompanied by an ac magnetic field which leads to the generation of spin waves. At resonance conditions the dynamics of vortices in magnetic superconductors changes drastically, resulting in strong peaks in the dc I-V characteristics at voltages at which the washboard frequency of the vortex lattice matches the spin wave frequency omegaS(g), where g are the reciprocal vortex lattice vectors. We show that if the washboard frequency lies above the magnetic gap, measurement of the I-V characteristics provides a new method to obtain information on the spectrum of magnetic excitations in borocarbides and cuprate layered magnetic superconductors.  相似文献   

2.
Planar magnetic colloidal crystals   总被引:1,自引:0,他引:1  
Wen W  Zhang L  Sheng P 《Physical review letters》2000,85(25):5464-5467
We report a novel form of planar magnetic colloidal crystals formed by coated magnetic microspheres floating on a liquid meniscus. Under an external magnetic field, the balance between the repulsive magnetic interaction and the "attractive" interaction, due to the weight of the particles projected along the surface tangent, yields not only the triangular lattice with a variable lattice constant, but also all the other planar crystal symmetries such as the oblique, centered-rectangular, rectangular, and square lattices. By using two different sized magnetic particles, local formations of 2D quasi-crystallites with fivefold symmetry are also observed.  相似文献   

3.
New configurations of two-dimensional lattices of magnetic domains with symmetry described by the P2 and Cmm2 space groups are revealed in studying the formation of domain structures in a harmonic magnetic field. Two-dimensional lattices belonging to five space groups of the orthorhombic and hexagonal systems are observed in a single iron garnet film. Changes in the lattice configurations and in the lattice elements occur upon the variation of only one parameter of the applied magnetic field, namely, its frequency.  相似文献   

4.
Y. Li  T.X. Wang  G.D. Liu 《Physics letters. A》2013,377(25-27):1655-1660
With the Monte Carlo simulation, we investigate the thermodynamics and magnetic properties of the artificial frustrated square and honeycomb lattices. The results from the Ising-like dipolar model show that there occurs one magnetic order transition for the square lattice while the honeycomb lattice exhibits two magnetic order phase transitions. When the magnetic field is applied perpendicular to one of sublattices, a sharp field-independent peak in the specific heat curves appears at a very low temperature for both frustrated lattices due to the occurrence of a long-range ordered state induced by the magnetic field. For the square lattice, the coercive field slightly increases with the angle of field relative to the vertical axis. For both frustrated lattices, the magnetic reversal is achieved mostly via flipping a chain of the nearest neighbor spins.  相似文献   

5.
The dynamic response of a system being near the stable equilibrium boundary to an external magnetic field pulse is studied for 2D lattices of magnetic nanoparticles with cubic crystallographic anisotropy. The conditions under which magnetic moment oscillations from individual dipoles propagate to the entire system are revealed. This effect results in the lattice response are significantly larger in the external pulse duration and with an amplitude rather weakly depending on initial conditions and external field parameters, the processes during which the pulse results in reorientation of only individual lattice dipoles.  相似文献   

6.
The ground state of an array of magnetic particles (magnetic dots), which are ordered in a square 2D lattice and whose magnetic moment is perpendicular to the lattice plane, in the presence of an external magnetic field has been analyzed. Such a model is applicable for sufficiently small dots with perpendicular anisotropy that are in a single-domain state and for dots in a strongly inhomogeneous vortex state whose magnetic moment is determined by the vortex core. For the magnetic field perpendicular to the system plane, the entire set of the states has been analyzed from the chessboard antiferromagnetic order of magnetic moments in low fields to the saturated state of the system with the parallel orientations of the magnetic moments of all dots in strong fields. In the presence of the border, the destruction of the chessboard order first occurs at the edges of the system, then near the extended sections of the surface, and finally expands over the entire interior of the array. The critical field at which this simplest state is destroyed is much more weakly than the value characteristic of the ideal infinite system. In contrast to this scenario, the destruction of the saturated state with decreasing field always begins far from the borders. Despite such different behaviors, the magnetic structure in the intermediate range of fields that is obtained with both increasing and decreasing field for finite arrays strongly differs from that characteristic of the ideal infinite system. The role of simple stacking faults of the magnetic dot lattice (such as single vacancies or their clusters) in the remagnetization of the system has been analyzed. The presence of such faults is shown to give rise to the appearance of local destructions of the chessboard antiferromagnetic order at fields that are much weaker than those for an ideal lattice.  相似文献   

7.
Nonlinear (at the second-harmonic frequency of the incident light) optical reflection by two-dimensional magnetic superstructures is theoretically studied. A square lattice of magnetic dots and a hexagonal lattice of magnetic bubbles (cylindrical magnetic domains) are considered. Because the periods of these structures are comparable with the wavelengths of the fundamental and the second-harmonic radiation, it would be possible to observe diffraction at the second-harmonic frequency. A polarization analysis of nonlinearly diffracted radiation is performed and the numbers of observable diffraction orders for the above structures are estimated. Received: 10 January 2002 / Published online: 11 June 2002  相似文献   

8.
We consider the Cooper-problem on a two-dimensional, square lattice with a uniform, perpendicular magnetic field. Only rational flux fractions are considered. An extended (real-space) Hubbard model including nearest and next nearest neighbor interactions is transformed to “k-space”, or more precisely, to the space of eigenfunctions of Harper’s equation, which constitute basis functions of the magnetic translation group for the lattice. A BCS-like truncation of the interaction term is performed. Expanding the interactions in the basis functions of the irreducible representations of the point group C4ν of the square lattice simplify calculations. The numerical results indicate enhanced binding compared to zero magnetic field, and thus re-entrant superconducting pairing at extreme magnetic fields, well beyond the point where the usual semi-classical treatment of the magnetic field breaks down.  相似文献   

9.
Akira Satoh 《Molecular physics》2013,111(18):2301-2311
We have developed a lattice Boltzmann method based on fluctuation hydrodynamics that is applicable to the flow problem of a particle suspension. In this method, we have introduced the viscosity-modifying method, rather than the velocity-scaling method, in which a modified viscosity is used for generating random forces in lattice Boltzmann simulations. The viscosity-modifying method is found to be applicable to the simulation of a magnetic particle suspension. We have applied this method to the two-dimensional Poiseuille flow of a magnetic suspension between two parallel walls in order to investigate the behavior of magnetic particles in a non-uniform applied magnetic field. From the results of the snapshots, the pair correlation function between the magnetic pole and the magnetic particles and the averaged local particle velocity and magnetization distributions, it was observed that the behavior of the magnetic particles changes significantly depending upon which factor dominates the phenomenon in the balance between the magnetic particle–particle interaction, the non-uniform applied magnetic field and the translational and rotational Brownian motion.  相似文献   

10.
The magnetic phase diagrams of 2D and 3D regular lattices formed by nonspherical single-domain ferromagnetic granules featuring a dipolar magnetic interaction are studied. The energy of a magnetic state of such systems is calculated using an approximate expression for the pair interaction of nonspherical granules. The character of the magnetic ground state of the system is determined by three geometric parameters: (i) the eccentricity of granules; (ii) the ratio of periods of the rectangular (2D) or tetragonal (3D) lattice; and (iii) the ratio of a lattice period to a granule size. In contrast to the case of lattices formed by point (or spherical) magnetic moments, in which the ground state is always antiferromagnetic or frustrated (for triangular lattices), the ground state of a 2D lattice composed of nonspherical granules can be ferromagnetic. The magnetic phase diagrams of the systems studied are constructed in the space of the above geometric parameters.  相似文献   

11.
We investigate the existence of the macroscopic quantum phase in trapped ultracold quantum degenerate gases in an asymmetrical two-dimensional magnetic lattice. We show the key to adiabatically control the tunneling in the new two-dimensional magnetic lattice by means of external magnetic bias fields. In solving the system of coupled time-dependent differential equations, described here by the Boson Josephson Junctions (BJJs), we used an order parameter that includes both time-dependent variational parameters to describe the fractional population at each lattice site and the phase difference to quantify the macroscopic quantum phase signature. A dynamical oscillation of the fractional population and the phase difference at each individual lattice site is observed when solving the BJJs system.  相似文献   

12.
The isothermal elastic constants and the coefficient of anomalous thermal expansion of a magnetic lattice are discussed. The spin system is described by the Ising model with an exchange coupling depending on lattice spacing. A behavior of the elastic constants and the coefficient of thermal expansion is found which is in qualitative agreement with experiments. The isothermal compressibility remains positive nearT c and no thermo-mechanical instability occurs (which would lead to a first-order phase transitions), in contrast to earlier theories.  相似文献   

13.
The concentration dependence of the specific magnetic moment value at room temperature in dilute semiconductor titanium oxides doped with either Co or Fe has been investigated. This value was found to increase sharply at small concentrations of magnetic impurity. The magnetic moment of 22.9 μB per impurity atom has been revealed for TiO2 doped with 0.15 at% Co, not yet reported in any semiconductor oxide systems. We conclude the observed giant magnetic moments are caused by the crystal lattice polarization at small impurity concentrations. The comparison with published data point to different types of the magnetization concentration dependence for various semiconductor matrixes that is probably related to the dielectric permittivity of the environment.  相似文献   

14.
We demonstrate optical magnetic resonance imaging (OMRI) of a Bose?CEinstein condensate of ytterbium atoms trapped in a one-dimensional (1D) optical lattice using an ultra-narrow optical transition 1S0?3P2 (m=?2). We developed a vacuum chamber equipped with a thin glass cell, which provides high optical access and allows a compact design of magnetic coils. A line shape of a measured spectrum of the OMRI is well described by a spatial distribution of the atoms in a 1D optical lattice with the Thomas?CFermi approximation and an applied magnetic field gradient. The observed spectrum exhibits a periodic structure corresponding to the optical lattice periodicity.  相似文献   

15.
The orthogonalized plane wave method of energy bandstructure calculation is generalized to the case of a metal under the influence of an external de magnetic field, with the magnetic translational symmetry taken into account fully. The magnetic field-dependent effective lattice potential or pseudopotential derived from it is interpreted as a “magnetic” pseudopotential and shown to depend only weakly on the magnetic field strength so that, to a good approximation, it can be replaced by an ordinary pseudopotential, and treated as a perturbation in the calculation of magnetic energy bands and galvanomagnetic properties in nearly-free-electron metals. Physical properties connected with the phenomenon of magnetic breakdown, in particular the Landau level broadening, which were previously shown by Pippard, Zak and others to be proportional to an unspecified pseudopotential, are reformulated in terms of the magnetic pseudopotential. The convergence of the method is also discussed.  相似文献   

16.
We investigate the n = 0 Landau level (LL) in monolayer graphene with high magnetic field. We find that the energy gap is opened in the n = 0 LL by the magnetic-field-dependent lattice relaxation originating from the interactions between the electrons (holes) and longitudinal-deformation-acoustic phonon. Both the linear and square-foot dependence of the energy gap on the magnetic field are obtained depending on the choice of the Debye cut-off wave number for the acoustic phonon. The relations of the Huang-Rhys parameter (lattice relaxation strength) and the transition linewidths with the magnetic field are also discussed. Our results agree with the current experiments on graphene in high magnetic field, and provide an alternative explanation for the experimental measurements.  相似文献   

17.
We analytically and numerically discuss the stability and dynamics of neutral atoms in a two-dimensional optical lattice subjected to an additional harmonic trap potential and artificial magnetic field. The harmonic trap potential plays a key role in modifying the equilibrium state properties of the system and stabilizing the cyclotron orbits of the condensate.Meanwhile, the presence of the harmonic trap potential and lattice potential results in rich cyclotron dynamics of the condensate. The coupling effects of lattice potential, artificial magnetic field, and harmonic trap potential lead to single periodic, multi-periodic or quasi-periodic cyclotron orbits of the condensate. So we can control the cyclotron dynamics of neutral atoms in optical lattice by manipulating the strength of harmonic confinement, artificial magnetic field, and initial conditions. Our results provide a direct theoretical evidence for the cyclotron dynamics of neutral atoms in optical lattices exposed to the artificial gauge magnetic field and harmonic trap potential.  相似文献   

18.
The accessibility of the critical parameters for the superfluid to Mott insulator quantum phase transition in a 2D permanent magnetic lattice is investigated. We determine the hopping matrix element J, the on-site interaction U, and hence the ratio J/U, in the harmonic oscillator wave function approximation. We show that for a range of realistic parameters the critical values of J/U, predicted by different methods for the Bose-Hubbard model in 2D, such as mean field theory and Monte Carlo simulations, are accessible in a 2D permanent magnetic lattice. The calculations are performed for a 2D permanent magnetic lattice created by two crossed arrays of parallel rectangular magnets plus a bias magnetic field.  相似文献   

19.
The tendency to structural instability and the nature of the magnetic ordering are investigated in all the cubic rare-earth-cadmium equiatomic compounds from measurements of resistivity and magnetic susceptibility. The CsCl-type structure is stable at room temperature in all the compounds. However, LaCd exhibits a lattice change at 61 K, while CeCd and PrCd undergo two transitions at 107 and 216 K, and 125 and 190 K, respectively. The low-temperature phases are unknown, but seem to have a symmetry lower than tetragonal. Other compounds are cubic at least in their paramagnetic phase. In connection with the change in the lattice symmetry, a change of the magnetic ordering is observed from ferromagnetism towards antiferromagnetism. Among the heavy rare-earth compounds, cubic thus ferromagnetic, DyCd plays a peculiar role since it undergoes a structural transition in its ordered range, the magnetoelastically stressed lattice becoming unstable again. The strength of bilinear interactions and the occurrence of quadrupolar pair coupling are then discussed.  相似文献   

20.
The main tendencies in the formation of local magnetic moments and hyperfine magnetic fields at Fe nuclei in Fe-Sn and Fe-Si alloys at low metalloid concentrations are analyzed on the basis of “first-principles” calculations. The results of calculations are compared with experimental data. The main differences between these alloys were proved to be due to the differences in their lattice parameters. It is shown that a significant contribution to the formation of the hyperfine field comes from the orbital magnetic moment and the Ruderman-Kittel-Kasuya-Yosida polarization, which depend on the impurity concentration and the distance to an impurity atom in the crystal lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号