首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ultrasensitive conformation-dependent colorimetric assay has been developed for the detection of mercury(II) ions. It is based on the use of exonuclease III (Exo III)-assisted target recycling and gold nanoparticles (AuNPs). In the absence of Hg(II), the hairpin-shaped DNA probe (H-DNA) binds to AuNPs and stabilizes them in solutions of high ionic strength. In the presence of Hg(II), on the other hand, the sticky termini of the H-DNA form a rigid DNA duplex stem with a blunt 3′-terminus. Thus, Exo III is activated as a biocatalyst for selective and stepwise removal of mononucleotides from the 3′-terminus of the H-DNA. As a result, Hg(II) is released from the T?Hg(II)?T complexes. The guanine-rich sequences released from the H-DNA are then self-assembled with potassium ion to form a stable G-quadruplex conformation. In solutions of high ionic strength, this results in aggregation of AuNPs and a color change from red to blue which can be seen with bare eyes. The method is highly sensitive and selective. It has a linear response in the 10 pM to 100 nM Hg(II) concentration range, and the detection limit is as low as 3.2 pM (at an S/N ratio of 3). The relative standard deviation at a level of 0.5 nM of Hg(II) is 4.9% (for n?=?10). The method was applied to the detection of Hg(II) in spiked environment water samples, with recoveries ranging from 92% to 106%.
Graphical abstract A conformation-dependent colorimetric system was fabricated for label-free detection of mercury(II) by utilizing exonuclease III(Exo III)-assisted target recycling and gold nanoparticles (AuNPs).
  相似文献   

2.
The article describes a colorimetric assay for the determination of thrombin. It is based on the application of a triple enzyme-mimetic activity and a dual aptamer binding strategy. The triple signal amplification relies on oxidation of the chromogenic enzyme substrate 3,3,5,5-tetramethylbenzidine (TMB) that is catalyzed by composites consisting of graphene oxide (GO), gold/platinum nanoparticles (AuPtNP), and aptamer (Apt15), a G-quadruplex/hemin conjugate. The dual-aptamer target binding strategy is based on the fact that thrombin has two active sites to be recognized by its aptamers (Apt15 and Apt29). Magnetic beads (MBs) were modified with Apt29 (Apt29-MB) and then are bound by the GO-AuPtNP-Apt15/G-quadruplex/hemin composites. In the presence of thrombin, Apt29-MB and the GO-AuPtNP-Apt15/G-quadruplex/hemin composites form a sandwich-like superstructure. Thus, the absorbance increases due to the formation of TMB oxide produced by catalysis of the composites. Under optimized conditions, the absorbance at 450 nm increases linearly in the 0.30 to 100 nM thrombin concentration range, and the limit of detection is 0.15 nM. The method is simple, rapid, and does not require complicated instrumentation. Bovine serum albumin, human serum albumin and other proteins were found not to interfere.
Graphical abstract Schematic presentation of the photometric thrombin assay based on a triple enzyme-mimetic activity of combined nanomaterials (consisting of GO, AuPtNPs and the G-quadruplex/hemin DNAzyme) and two aptamers TMB: 3,3,5,5-tetramethylbenzidine, TMBox: 3,3,5,5-tetramethylbenzidine oxide, AuPtNP: gold/platinum nanoparticles).
  相似文献   

3.
The authors describe a colorimetric method for the determination of the staphylococcal enterotoxin B (SEB) that also allows for visual readout. The assay is based on the growth of gold nanoparticles (AuNPs) mediated by a hemin/G-quadruplex DNAzyme which generates a color change from red to blue in the presence of SEB. The method is enzyme-free and does not require a label. The kinetics of the formation of the AuNPs is controlled by the hemin/G-quadruplex DNAzyme and this is key to the signal generation mechanism. In the presence of SEB, the reactions between aptamer and target modulated the amount of single probe G strands that form DNAzyme capable of consuming hydrogen peroxide. The growth process of AuNPs is influenced by the resulting concentration of H2O2 and leads to the color change. Under optimal conditions, a linear relationship exists between absorbance and SEB concentration in the range from 0.1 to 500 pg·mL ̄1 which covers the clinically relevant range. In case of visual detection, the lower limit of detection is 1 pg·mL?1. The assay described here is sensitive, comparably inexpensive and can detect SEB rapidly without the need for sophisticated equipment. In our perception, the method has a wide scope in that it may be adapted to various nucleic acids, proteins and other biomolecules if respective aptamers are available.
Graphical abstract Colorimetric determination of Staphylococcal enterotoxin B via DNAzyme-guided growth of gold nanoparticles
  相似文献   

4.
An aptamer based assay is described for the colorimetric detection of adenosine. The presence of adenosine triggers the deformation of hairpin DNA oligonucleotide (HP1) containing adenosine aptamer and then hybridizes another unlabeled hairpin DNA oligonucleotide (HP2). This leads to the formation of a double strand with a blunt 3′ terminal. After exonuclease III (Exo III)-assisted degradation, the guanine-rich strand (GRS) is released from HP2. Hence, the adenosine-HP1 complex is released to the solution where it can hybridize another HP2 and initiate many cycles of the digestion reaction with the assistance of Exo III. This leads to the generation of a large number of GRS strands after multiple cycles. The GRS stabilize the red AuNPs against aggregation in the presence of potassium ions. If, however, GRS forms a G-quadruplex, it loses its ability to protect gold nanoparticles (AuNPs) from salt-induced AuNP aggregation. Therefore, the color of the solution changes from red to blue which can be visually observed. This colorimetric assay has a 0.13 nM detection limit and a wide linear range that extends from 5 nM to 1 μM.
Graphical abstract Schematic presentation of a colorimetric aptamer biosensor for adenosine detection based on DNA cycling amplification and salt-induced aggregation of gold nanoparticles.
  相似文献   

5.
A toehold-aided DNA recycling amplification technology was developed based on the combination of toehold-aided DNA recycling and the hemin/G-quadruplex label. The dsDNA formed between aptamer and DNA1 was first immobilized on magnetic beads. On addition of target analyte (exemplified here for riboflavin), the aptamer-riboflavin complex is formed and DNA1 is released by the beads. After magnetic separation, the supernatant containing the released DNA1 is added to a solution containing the hairpin capture DNA on magnetic beads. DNA1 will hybridize with the hairpin capture DNA via toehold binding and branch migration. This process will open the hairpin structure, and an external toehold is formed in the newly formed dsDNA. On addition of reporter DNA containing the G-quadruplex, it will interact with the formed dsDNA via toehold binding and branch migration, resulting in the releasing of DNA1 and capturing of reporter DNA on the magnetic beads. The released DNA1 will bind to another hairpin capture DNA which can start another round of DNA1 recycling. Chemiluminescence (CL) is generated by the G-quadruplex-hemin-luminol CL reaction system. Under optimal conditions, the calibration plot is linear in the 0.1 to 700 nM riboflavin concentration range, with a 30 pM detection limit (at a signal-to-noise ratio of 3). The method was successfully applied to the quantitation of riboflavin in spiked urine samples.
Graphical abstract Toehold-aided DNA recycling coupled with hemin G-quadruplex for target detection.
  相似文献   

6.
The authors describe an array for chemiluminescence (CL) based determination of cardiac troponin T (cTnT), an important cardiovascular disease marker. The tracing tag consists of silver nanoparticles (AgNPs) loaded with guanine-rich DNA sequences and detection antibody in a high numerical ratio. The loaded AgNPs were then reacted with hemin to form a hemin/G-quadruplex DNAzyme. A disposable immunosensor array was fabricated by immobilizing capture antibody on corresponding sensing sites on a glass chip. Once a sandwich immunocomplex is formed on the array, the tracing tag catalyzes the CL reaction of the luminol-p-iodophenol and H2O2 system to produce a CL signal, which is collected by a CCD camera. An intuitive CL image is obtained containing all of the spots on the array. Under optimal conditions, the method shows a wide linear range over 4 orders of magnitude (from 0.003 to 270 ng·L?1), a detection limit down to 84 fg·L?1, and a throughput as high as 44 tests·h?1. The results obtained with serum samples are in acceptable agreement with reference values. The AgNP-based tracing tag as well as the immunoassay method shows a promising potential for point-of-care testing for the early clinical diagnosis of cardiovascular disease.
Graphical abstract Schematic presentation of silver nanoparticles (AgNPs) functionalized with hemin/G-quadruplex DNAzyme for highly sensitive chemiluminescence (CL) immunoassay of cardiac troponin T (cTnT) on a glass chip array.
  相似文献   

7.
The authors describe a colorimetric method for the determination of DNA based on the deaggregation of gold nanoparticles (AuNPs) induced by exonuclease III (Exo III). DNA amplification is accomplished by Exo III to generate large quantities of the residual DNA. Residual DNA tethers onto the surfaces of AuNPs which prevents their aggregation. Hence, the color of the solution is red. However, in the absence of DNA, salt-induced aggregation is not prevented, and the bluish-purple color of the aggregated AuNPs is observed. The ratio of absorbances at 525 and 625 nm increases up to 150 nM DNA concentrations, and the LOD is as low as 3.0 nM. It is shown that the presence of 300 nM concentrations of random DNA (with a mass up to 10-fold that of target DNA) does not interfere. The method was successfully applied to the analysis of DNA in spiked serum samples. The method is simple, reliable, and does not require complicated amplification steps and expensive instrumentation.
Graphical abstract Schematic of a sensing strategy for DNA detection by exonuclease III-induced deaggregation of gold nanoparticles. DNA concentrations as  low as 3 nM can be detected via colorimetric monitoring of the color change from red to purple-blue.
  相似文献   

8.
Seok  Youngung  Byun  Ju-Young  Mun  Hyoyoung  Kim  Min-Gon 《Mikrochimica acta》2014,181(15):1965-1971

A novel strategy was devised for colorimetric analysis of the products of the polymerase chain reaction (PCR). The method takes advantage of simultaneous amplification of a horseradish peroxidase-mimicking DNAzyme (HRPzyme) during the PCR process. It is performed using a DNA specific forward primer and a universal reverse primer containing a complementary HRPzyme sequence. The double-strand PCR products, which include the HRPzyme sequence, are treated with a mixture of hemin and TMB (3,3′,5,5′–tetramethylbenzidine) in the presence of hydrogen peroxide. The resulting HRPzyme/hemin complex then promotes a peroxidase mimicking reaction, which produces the blue colored oxidized TMB. This colorimetric method can be more easily performed than previously developed gel based detection procedures and, as a result, can be conveniently applied to the specific and sensitive colorimetric analysis of DNA sequences arising from pathogenic bacteria. The potentially broad applicability of the new method has been demonstrated by its use in the identification of the 16s rDNA of Salmonella Typhimurium.

A novel strategy was devised for simple colorimetric analysis of PCR products with amplification of a horseradish peroxidase-mimicking DNAzyme(HRPzyme). This colorimetric method can be much more easily performed than previously developed gel based detection procedures and potentially broad applicability for other DNA analysis.

  相似文献   

9.
Yang  Zhiqing  Xie  Liyan  Yin  Huanshun  Zhou  Yunlei  Ai  Shiyun 《Mikrochimica acta》2015,182(15):2607-2613

We describe an electrochemical bioassay for the detection of the activity of methyltransferase (MTase), and for screening this enzyme’s inhibitors. The assay is based on the conjugation of a hemin to a G-quadruplex that enables enzymatic signal amplification with the aid of exonuclease III (ExoIII). In the first step, double-stranded DNA containing the quadruplex-forming oligomer is assembled on the surface of a gold electrode and then methylated by DNA adenine methyltransferase (DAM). After cleaved by endonuclease DpnI, the methylated DNA is digested by ExoIII and the quadruplex-forming oligomers are liberated. This leads to the formation of a hemin/G-quadruplex (in presence of hemin and of potassium ions). The hemin/G-quadruplex catalyzes the oxidization of hydroquinone by H2O2 and the benzoquinone was formed to generate electrochemical signal. Finally, the gold electrode modified with reduced graphene oxide was used as working electrode for performing differential pulse voltammetry. The method has a detection limit of 0.31 unit · mL−1. A study on the inhibition of MTase showed it was inhibited by epicatechin with an IC50 value of 157 μM.

We describe an electrochemical bioassay for the detection of the activity of methyltransferase and for screening for its inhibitors. Due to the conjugation of a hemin to a G-quadruplex, strong enzymatic signal amplification is enabled with the aid of exonuclease III.

  相似文献   

10.
MicroRNAs (miRNAs) play a considerable role in cancer occurrence and development, and have been identified as promising noninvasive biomarkers. The authors describe a voltammetric method for the determination of the cancer biomarker microRNA-21 (miRNA). It is based on a combination of a universal DNA signal transducer and isothermal target recycling amplification. A hairpin capture probe is bound to the target miRNA to form a duplex structure and to create a toehold in the transducer for initiating the target recycling amplification reaction. In contrast to traditional capture probes, a mismatched site is introduced to improve its ability to capture the target. In order to reduce the complex design procedures of the sequence and widen the applicability of this method, a signal transducer is introduced. Under optimal conditions, response to target miRNA is linear in the 0.5 to 2000 pM concentration range, with a 56 fM. detection limit (at an S/N ratio of 3). In order to characterize the process of target recycling and the stepwise modification of the electrode, real-time fluorescence, agarose gel electrophoresis, cyclic voltammetry, electrochemical impedance spectroscopy and chronocoulometry were used. The results indicate that this isothermal target recycling amplification results in an electrochemical biosensing scheme with wide potential for sensing other bioanalytes.
Graphical abstract Schematic illustration of the electrochemical biosensing platform for miRNA-21 detection based on isothermal target recycling amplification and DNA signal transducer triggered strategy.
  相似文献   

11.
Yang  Juan  Xiang  Yu  Song  Chao  Liu  Lingzhi  Jing  Xiaoying  Xie  Guoming  Xiang  Hua 《Mikrochimica acta》2015,182(15):2377-2385

We report on a new amplification strategy for use in an immunoassay for influenza virus subtype H7N9. Graphene sheets were first placed on a glassy carbon electrode (GCE), and gold nanoparticles were then electrodeposited as a support for a layer of alcohol dehydrogenase (ADH) in a sol–gel containing thiol groups. Protein A was used to properly orientate immobilized antibody against H7N9 on the sol–gel, and this is shown to result in strongly improved specificity of the antigen-antibody binding. Thus, a sensitive and specific immunosensor was obtained in which a quadruple signal amplification strategy is employed, viz. (a) via the use of graphene sheets, (b) via a hybridization chain reaction, (c) the use of hemin/G-quadruplex DNAzyme concatamers, and (d) the use of ADH. The hemin/G-quadruplex is a typical DNAzyme, which simultaneously acts as NADH oxidase and HRP-mimicking DNAzyme. The hybridization chain reaction-based DNAzyme concatamers assembled on multi-walled carbon nanotubes (MWCNTs) and the ADH represent a triple electrocatalytic enzyme cascade system. Sandwich immunoreactions occurred between the capture antibody on the electrode and the secondary antibody labeled with MWCNTs. Positively charged Methylene Blue (MB) was then used as an intercalator to detect the DNAzyme concatamer formed. The differential pulse voltammetric signals for MB are related to the concentration of H7N9 in the range from 8 to 60 pg · mL−1, and the detection limit is 0.81 pg · mL−1 (at an S/N ratio of 3). This immunoassay is very sensitive, specific and robust.

An electrochemical sandwich immunosensor has been developed for sensitive and specific detection of influenza virus subtype H7N9. Protein A was used to properly orientate antibody. The hybridization chain reaction based DNAzyme concatamers assembled on multi-walled carbon nanotubes (MWCNTs) and the ADH represent a triple electrocatalytic enzyme cascade system.

  相似文献   

12.
An autonomous DNA nanomachine based on rolling circle amplification (RCA)-bridged two-stage exonuclease III (Exo III)-induced recycling amplification (Exo III-RCA-Exo III) was developed for label-free and highly sensitive homogeneous multi-amplified detection of DNA combined with sensitive fluorescence detection technique. According to the configuration, the analysis of DNA is accomplished by recognizing the target to a unlabeled molecular beacon (UMB) that integrates target-binding and signal transducer within one multifunctional design, followed by the target-binding of UMB in duplex DNA removed stepwise by Exo III accompanied by the releasing of target DNA for the successive hybridization and cleavage process and autonomous generation of the primer that initiate RCA process with a rational designed padlock DNA. The RCA products containing thousands of repeated catalytic sequences catalytically hybridize with a hairpin reporter probe that includes a “caged” inactive G-quadruplex sequence (HGP) and were then detected by Exo III-assisted recycling amplification, liberating the active G-quadruplex and generating remarkable ZnPPIX/G-quadruplex fluorescence signals with the help of zinc(II)-protoporphyrin IX (ZnPPIX). The proposed strategy showed a wide dynamic range over 7 orders of magnitude with a low limit of detection of 0.51 aM. In addition, this designed protocol can discriminate mismatched DNA from perfectly matched target DNA, and holds a great potential for early diagnosis in gene-related diseases.  相似文献   

13.
Nitrogen- and iron-containing carbon dots (N,Fe-CDs) are synthesized by hydrothermal treatment of branched polyethylenimine (BPEI) and hemin at 180 °C. The N,Fe-CDs are mainly doped with nitrogen and trace amounts of iron(III). The N,Fe-CDs also display intrinsic fluorescence with excitation/emission maxima at 365/452 nm and a quantum yield of 27 %. The nanodots are shown to act as peroxidase mimics by catalyzing the oxidation of tetramethylbenzidine (TMB) by hydrogen peroxide to form a blue product whose quantity can be determined by photometry at 652 nm. This was exploited to design colorimetric and fluorometric assays for dopamine (DA). The colorimetric assay is based on the oxidation of DA by H2O2 in presence of the N,Fe-CDs and TMB. It has an instrumental detection limit of 40 nM (at an S/N ratio of 3), and a visual detection limit of 0.4 μM. The fluorometric assay is based on an inner filter effect that is caused by the formation of oxidized TMB which overlaps (and absorbs) the emission of the N,Fe-CDs located at 452 nm. The fluorometric detection limit is as low as 20 nM (at an S/N ratio of 3).
Graphical abstract Carbon dots containing nitrogen and iron (N,Fe-CDs) were synthesized by hydrothermal treatment of branched polyethylenimine and hemin. The N,Fe-CDs display excellent fluorescent properties, peroxidase-like activity and potential application in colorimetric and fluorometric detection of dopamine.
  相似文献   

14.
Zhao  Hengzhi  Dong  Jingjing  Zhou  Fulin  Li  Baoxin 《Mikrochimica acta》2015,182(15):2495-2502

We describe a simple and homogenous fluorimetric method for sensitive determination of DNA. It is based on target-triggered isothermal cycling and a cascade exponential amplification reaction that generates a large amount of a G-quadruplex. This results in strong fluorescence signal when using thioflavin T as a G-quadruplex-specific light-up fluorescent probe. Tedious handling after amplification is widely eliminated by the addition of thioflavin T. No other exogenous reagent is required. This detection platform is inexpensive and rapid, and displays high sensitivity for target DNA, with a detection limit as low as 91 pM.

The addition of target DNA can trigger the isothermal exponential amplification reaction to generate a large amount of G-quadruplex sequence oligonucleotides and then employ thioflavin T (Th T) (a G-quadruplex-specific light-up dye) as signal output for sensitive DNA detection.

  相似文献   

15.
The authors describe a method for DNA target recognition and signal amplification that is based on the target-induced formation of a three way junction. The subsequent assembly of two DNA probes releases the inhibitory strand and triggers a downstream strand displacement amplification. This causes the formation of a G-rich single sequence that binds to a hemin monomer with its peroxidase-mimicking properties. The resulting peroxidase (POx) activity is quantified by using H2O2 and TMB as the substrate. In the presence of an inhibitor, in contrast, the POx-like activity is strongly reduced. This forms the basis for a highly sensitive DNA assay. It has a 0.8 pM detection limit when operated at a wavelength of 450 nm and was applied to the isothermal determination of target DNA with high selectivity.
Graphical abstract Schematic of the assay: Introduction of target results in the formation of a three way junction. The subsequent assembly of two probes releases the inhibitory strand and triggers a downstream strand displacement amplification, generating amount of G-rich single sequence which causes peroxidase-mimicking activity on binding to a hemin monomer.
  相似文献   

16.
A DNAzyme-embedded hyperbranched DNA dendrimer is used as a colorimetric signal amplifier in an ultrasensitive detection scheme for nucleic acids. The hyperbranched DNA dendrimers were constructed by single-step autonomous self-assembly of three structure-free DNA monomers. A cascade of self-assembly reactions between the first and second strands leads to the formation of linear DNA concatemers containing overhang flank fragments. The third strand, which bears a peroxidase-mimicking DNAzyme domain, serves as a bridge to trigger self-assembly between the first and second strands across the side chain direction. This results in a chain branching growth of the DNAzyme-embedded DNA dendrimer. This signal amplifier was incorporated into the streptavidin-biotin detection system which comprises an adaptor oligonucleotide and a biotinylated capture probe. The resulting platform is capable of detecting a nucleic acid target with an LOD as low as 0.8 fM. Such sensitivity is comparable if not superior to most of the reported enzyme-free (and even enzyme-assisted) signal amplification strategies. The DNA dendrimer based method is expected to provide a universal platform for extraordinary signal enhancement in detecting other nucleic acid biomarkers by altering the respective sequences of adaptor and capture probe.
Graphical abstract Schematic of an assembly of a DNAzyme-embedded hyperbranched DNA dendrimer which operates as a signal amplifier for nucleic acids detection. The nanostructure is constructed by autonomous self-assembly of three DNA monomers. Colored letters represent each domain, and complementary domains are marked by asterisk. Domain d represents the DNAzyme sequence.
  相似文献   

17.
The article reports an aptamer based assay for cocaine by employing graphene oxide and exonuclease III-assisted signal amplification. It is based on the following scheme and experimental steps: (1) Exo III can digest dsDNA with blunt or recessed 3-terminus, but it has limited activity to ssDNA or dsDNA with protruding 3-terminus; (2) GO can absorb the FAM-labeled ssDNA probe and quench the fluorescence of probe, while the affinity between FAM-labeled mononucleotide and GO is negligible; (3) Cocaine aptamer can be split into two flexible ssDNA pieces (Probe 1 and Probe 2) without significant perturbation of cocaine-binding abilities; (4) The triple complex consisting of Probe 1, Probe 2 and cocaine can be digested by Exo III with the similar efficiency as normal dsDNA. Cocaine aptamer is split into two flexible ssDNA pieces (Probe 2 and 3′-FAM-labeled Probe 1). Cocaine can mediate the cocaine aptamer fragments forming a triplex. The triple complex has unique characteristic with 3′-FAM-labeled blunt end at the Probe 1 and 3′-overhang end at Probe 2. If exonuclease III is added, it will catalyze the stepwise removal of fluorescein (FAM) labeled mononucleotides from the 3-hydroxy termini of the special triplex complex, resulting in liberation of cocaine. The cocaine released in this step can produce a new cleavage cycle, thereby leading to target recycling. Through such a cyclic bound-hydrolysis process, small amounts of cocaine can induce the cleavage of a large number of FAM-labeled probe 1. The cleaved FAM-labeled mononucleotides are not adsorbed on the surface of graphene oxide (GO), so a strong fluorescence signal enhancement is observed as the cocaine triggers enzymatic digestion. Under optimized conditions, the assay allows cocaine to be detected in the 1 to 500 nM concentration range with a detection limit of 0.1 nM. The method was applied to the determination of cocaine in spiked human plasma, with recoveries ranging from 92.0 to 111.8 % and RSD of <12.8 %.
Graphical abstract Aptamer based fluorescent cocaine assay based on graphene oxide and exonuclease III-assisted signal amplification
  相似文献   

18.
The authors describe a novel assay for the detection of methylated DNA site. Rolling circle amplification and CdSe/ZnS quantum dots with high fluorescence efficiency are applied in this method. The CdSe/ZnS quantum dots act as electron donors, and hemin and oxygen (derived from hydrogen peroxide act as acceptors in photoinduced electron transfer. The assay, best performed at excitation/emission peaks of 450/620 nm, is sensitive and specific. Fluorometric response is linear in the 1 pM to 100 nM DNA concentration range, and the lowest detectable concentration of methylated DNA is 142 fM (S/N =?3). The method is capable of recognizing 0.01% methylated DNA in a mixture of methylated/unmethylated DNA.
Graphical abstract A novel method for methylated sites detection in DNA is established. Rolling circle amplification and photoinduced electron transfer. CdSe/ZnS quantum dots with high fluorescence efficiency act as the electron donor, while G-quadruplex/hemin and hydrogen peroxide derived oxygen act as electron acceptor. It presents a linear response towards 1 pM to 100 nM methylated DNA with a correlation coefficient of 0.9968, and the lowest detectable concentration of methylated DNA was 142 fM, with selectivity significantly superior to other methods.
  相似文献   

19.
The authors describe a colorimetric method for the determination of Hg(II) ion. It is based on the color change from red to colorless as displayed by gold nanoparticle (AuNP) modified with thymine - rich DNA. Signal amplification is accomplished by free strand displacement recycling. In this strategy, Hg(II) unfolds the arch-trigger duplex due to the high affinity between Hg(II) and the thymines to form T-Hg(II)-T structures, thereby causing the release of trigger. The liberated trigger unfolds the hairpin structure of H1, and unfolded H1 further unfolds with H2. As a result, the H2 hairpin displaces trigger, and the released trigger unfolds another H1. This results in strong and enzyme-free strand displacement recycling amplification. The aggregation of DNA-AuNPs occurs in the presence of the duplex formed by hairpins H2 and H1. This results in a color change from red to colorless that can be visually observed. Under optimal conditions, the assay has a detection range over 4 orders of magnitude and a 3.4 nM detection limit. The assay is selective, sensitive, rapid and cost-effective. In our perception, it represents a useful platform for determination of Hg(II).
Graphical abstract Schematic presentation of the  simple, rapid, low cost colorimetric detection of mercury(II) based on enzyme-free strand displacement amplification along with DNA-labeled AuNP.
  相似文献   

20.
Nanodiamonds were modified such that they carry thiol groups (ND-thiol). Gold nanoparticles were reacted with ND-thiol to obtain a highly stable conjugate of the type ND@AuNPs. Both ND-thiol and the ND@AuNPs were characterized by SEM, TEM, AFM, DLS, zeta potential, XPS, XRD, UV-Vis, Raman, FTIR and cytotoxicity studies. Their biocompatibility was confirmed via an MTT assay with HeLa cells. At a pH value of 6, the ND@AuNPs represent a colorimetric probe that can be used to selectively detect the illegally used β-adrenergic drug clenbuterol (CLB) and the pollutant chromium(III). Detection can be performed visually by monitoring the color change from wine red to purple blue, or by colorimetric measurement of the so-called SPR peaks at 651 and 710 nm. The color changes are due to aggregation, and this is confirmed by TEM and DLS data. The involvement of surface functional groups that assist in analyte recognition was verified by FTIR. The detection limits are 0.49 nM for CLB, and 0.37 nM for Cr(III). The ND@AuNPs were successfully applied to the determination of Cr(III) and CLB in spiked human urine samples. Notably, the low interference by other ions in the detection of Cr(III) in tap and lake water is confirmed by ICP-MS analyses.
Graphical abstract Nanodiamonds carrying thiol groups (ND-Thiol) were conjugated to gold nanoparticles, and the resulting ND@AuNPs are shown to be viable probes for the colorimetric detection of sub-nanomolar levels of clenbuterol (CLB) and Cr(III) ions, with demonstrated applicability to real water and urine samples.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号