首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
The electrochemical fiber coating (EFC) technique was used for the preparation of dodecylsulfate-doped polypyrrole (PPy-DS), and applied as a new fiber for solid-phase microextraction (SPME) procedures. PPy-DS film was directly electrodeposited on the surface of a platinum wire from an aqueous solution containing pyrrole and sodium dodecylsulfate, using cyclic voltammetry (CV). The effect of polymerization conditions and type of dopants on the thermal stability, adhesion and extraction characteristics of the fiber were investigated. The electron microscopy imaging of PPy-DS film suggested that the surface fiber coating was well-distributed with a porous structure. The fiber coating can be prepared easily in a reproducible manner, and it is inexpensive and has a stable performance at high temperatures (up to the 300 degrees C). The extraction properties of the fiber to eight polycyclic aromatic hydrocarbons (PAHs) were examined, using a headspace-SPME (HS-SPME) device coupled with gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The results revealed study shows that PPy-DS as a SPME fiber coating is suitable for the successful extraction of PAHs. The effects of the extraction parameters including exposure time, sampling temperature, salt concentration, and stirring rate on the extraction efficiency have been studied. A satisfactory reproducibility for extractions from spiked water samples at PPb-level with R.S.D. < 7.6% (n = 7) was obtained. The calibration graphs were linear in the range of 0.5-100ng ml(-1) and detection limits for the selected PAHs were between 0.05-0.16 ng ml(-1). Comparing the HS-SPME results for extraction and determination of PAHs using PPy-DS fiber with the corresponding literature data using PDMS fiber shows that the proposed fiber has a better detection limit for low molecular weight PAHs. The life span and stability of PPy-DS fiber is good and it can be used more than 50 times at 250 degrees C without any significant change in sorption properties.  相似文献   

2.
Two methods to estimate distribution coefficients (K) between air and poly(dimethylsiloxane) (PDMS) coating of solid-phase microextraction (SPME) fibers for eight low molecular polycyclic aromatic hydrocarbons (PAHs) there are presented. The PDMS phases were used for determination of the coefficients according to equilibrium theory with help of a developed static calibration system (SCS). Another way to estimate the coefficients is based on the use of a linear relationship between the logarithm of the coefficients (log K) and linear temperature-programmed retention indexes (LTPRI) of the compounds without necessity to calibrate. The log K values for both of methods ranged from 5.2 (naphthalene) to 8.9 (pyrene) at 22 degrees C. Relative standard deviation (R.S.D.) of log K for each compound determined by static calibration was no more than 5.3%. R.S.D. of retention times for LTPRI indices did not exceed 0.28% for repeated injection. All experiments were implemented on a GC-MS system.  相似文献   

3.
Effects of ozone on air sampling of standard gas mixtures of aromatic hydrocarbons were tested using solid-phase microextraction (SPME). Standard concentrations of ozone ranging from 10 ppb (v/v) to 6400 ppm (v/v) were generated using an in-house built ozone generator based on corona discharge. Effects of temperature, discharge voltage, and oxygen flow on the ozone generation were tested. The working dc voltage had the greatest effect on generated ozone concentration and was proportional to the ozone concentration. Generation temperature and oxygen flow rate were inversely proportional to ozone concentrations. Produced ozone was mixed with standard benzene, toluene, ethylbenzene, and xylenes (BTEX) gas at less than 100 ppb (v/v). Air samples were collected with poly(dimethylsiloxane) (PDMS) 100 microm SPME fibers and analyzed by gas chromatography (GC)-flame ionization detection (FID) and GC-MS. Significant reductions of BTEX concentrations were observed. In addition, some products of BTEX-ozone-oxygen reactions were identified. SPME worked well as a rapid sampler for BTEX and BTEX-ozone-oxygen reaction products. No significant deterioration of the PDMS coating and no significant reduction of absorption capacity were observed after repeated exposure to ozone.  相似文献   

4.
5.
This study describes the determination of polycyclic aromatic hydrocarbons (PAHs) in water using high-performance liquid chromatography (HPLC) coupled with fluorescence detection (FLD). Because individual PAHs are generally present in water only at trace levels, a sensitive and accurate determination technique is essential. The separation and detection of five PAHs were run completely within 25 min by the HPLC/FLD system with an analytical C18 column, a fluorescence detection, and acetonitrile-water gradient elution. Calibration graphs were linear with very good correlation coefficients (r > 0.9998), and the detection limits were in the range of 2-6 ng/l for five PAHs. Solid phase microextraction (SPME) was performed for sample pretreatment prior to HPLC-FLD determination, and the governing parameters were investigated. Compared to conventional methods, SPME has high recovery, saves considerable time, and reduces solvents waste. The extraction efficiencies of five PAHs were above 88% and the extraction times were 35 min in one pretreatment procedure. One particular discovery is that 1.5 M sodium monochloroactate (ClCH2COONa) can improve the extraction yield of PAH compounds more than other inorganic salts. The SPME-HPLC-FLD technique provides a relatively simple, convenient, practical procedure, which was here successfully applied to determine five PAHs in water from authentic water samples.  相似文献   

6.
A method for the determination of trace Cr(III) in aqueous solution by solid-phase microextraction (SPME) coupled with gas chromatography (GC)-flame photometric detection (FPD) was developed. Aqueous Cr(III) was first converted to the volatile chromium trifluoroacetylacetonate (Cr(tfa)3) by derivatization with 1,1,1-trifluoroacetylacetone (Htfa), followed by SPME extraction using a polyimide-coated silica fiber. The distribution constants (K) of derivatized cis- and trans-Cr(tfa)3 between the polyimide phase and aqueous phase were 2012 and 2214, respectively. The two Cr(tfa)3 isomers extracted can be efficiently separated by a DB-210 GC column within 9 min. Selective detection of Cr was performed by a FPD equipped with a 385-nm long-pass filter. Linearity (r> 0.99) over the concentration range 5-300 ng ml(-1) Cr was obtained and the limit of detection was 2 ng ml(-1) Cr. The relative standard deviation was 7% at 10 ng ml(-1) Cr (n = 5). Applicability of this method to water analysis was tested by analyzing the chromium content in a reference standard water sample and an industrial effluent.  相似文献   

7.
A new automated headspace solid-phase microextraction (HS-SPME) sampling device was developed, with the capability of heating the sample matrix and simultaneously cooling the fiber coating. The device was evaluated for the quantitative extraction of polycyclic aromatic hydrocarbons (PAHs) from solid matrices. The proposed device improves the efficiency of the release of analytes from the matrix, facilitates the mass transfer into the headspace and significantly increases the partition coefficients of the analytes, by creating a temperature gap between the cold-fiber (CF) coating and the hot headspace. The reliability and applicability of previously reported cold-fiber devices are significantly enhanced by this improvement. In addition, it can be easily adopted for full automation of extraction, enrichment and introduction of different samples using commercially available autosampling devices. Sand samples spiked with PAHs were used as solid matrices and the effect of different experimental parameters were studied, including the extraction temperature, extraction time, moisture content, and the effect of sonication and modifier under optimal experimental conditions, linear calibration curves were obtained in the range of 0.0009-1000 ng/g, with regression coefficients higher than 0.99 and detection limits that ranged from 0.3 to 3 pg/g. Reproducible, precise and high throughput extraction, monitoring and quantification of PAHs were achieved with the automated cold-fiber headspace solid-phase microextraction (CF-HS-SPME) device coupled to GC-flame ionization detection. Determination of PAHs in certified reference sediments using the proposed approach exhibited acceptable agreement with the standard values.  相似文献   

8.
A novel mesoporous‐coated stainless steel wire microextraction coupled with the HPLC procedure for quantification of four polycyclic aromatic hydrocarbons in water has been developed, based on the sorption of target analytes on a selectively adsorptive fiber and subsequent desorption of analytes directly into HPLC. Phenyl‐functionalized mesoporous materials (Ph‐SBA‐15) were synthesized and coated on the surfaces of a stainless steel wire. Due to the high porosity and large surface area of the Ph‐SBA‐15, high extraction efficiency is expected. The influence of various parameters on polycyclic aromatic hydrocarbons extraction efficiency were thoroughly studied and optimized (such as the extraction temperature, the extraction time, the desorption time, the stirring rate and the ionic strength of samples). The results showed that each compound for the analysis of real water samples was tested under optimal conditions with the linearity ranging from 1.02×10?3 to 200 μg/ L and the detection limits were found from 0.32 to 2.44 ng/ L, respectively. The RSD of the new method was smaller than 4.10%.  相似文献   

9.
A method for the ion chromatographic separation of cationic CrFx-species in aqueous acidic solutions with photometric detection is described. CrF3-, CrF+2- and CrF2+-species can be separated on a commercial cation-exchange column using HCl/2,3-diaminopropionic acid (DAP) as eluent. The chromium(III)-complexes are converted with 2,6- pyridinedicarboxylic acid (PDCA) into the violet [Cr(PDCA)2]--complex at temperatures >90°C by post-column derivatisation for the subsequent spectrophotometric detection at =335 nm. Iron- and nickel-ions do not disturb the determination even in concentrations higher than those of the chromium (III)-ions.  相似文献   

10.
Miniaturized matrix solid-phase dispersion (MSPD) was developed for the extraction of common polycyclic aromatic hydrocarbons (PAHs) from bivalve samples (100mg, dry weight). Additional clean-up and analyte enrichment was accomplished by in-tube solid-phase microextraction (SPME). For this purpose the extracts collected after MSPD were diluted with water and injected into a capillary column coated with the extractive phase. This capillary column was connected to the analytical column by means of a switching valve. Separation and quantification of the PAHs were carried out using a monolithic LC column and fluorescence detection. Since the in-tube SPME device allowed the processing of large volumes of the extracts (2.0 mL) excellent sensitivity was achieved, thus making solvent evaporation operations unnecessary. The overall recoveries ranged from 10% to 28% for the studied compounds. The relative standard deviation (RSD) ranged from 2% to 10% for intra-day variation (n=3), and the limits of detection (LODs) were < or =0.6 ng/g (dry weight). The proposed procedure was very simple and rapid (total analysis time was approximately 20 min), and the consumption of organic solvents and extractive phases was drastically reduced. The reliability of the proposed MSPD/in-tube SPME method was tested by analysing several bivalves (mussels and tellins) as well as a standard reference material (SRM).  相似文献   

11.
A method for the ion chromatographic separation of cationic CrF(x)-species in aqueous acidic solutions with photometric detection is described. CrF(3)-, CrF(+)(2)- and CrF(2+)-species can be separated on a commercial cation-exchange column using HCl/2,3-diaminopropionic acid (DAP) as eluent. The chromium(III)-complexes are converted with 2,6- pyridinedicarboxylic acid (PDCA) into the violet [Cr(PDCA)(2)](-)-complex at temperatures >90 degrees C by post-column derivatisation for the subsequent spectrophotometric detection at lambda=335 nm. Iron- and nickel-ions do not disturb the determination even in concentrations higher than those of the chromium (III)-ions.  相似文献   

12.
Manual solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) is applied for the determination of polycyclic aromatic hydrocarbons (PAHs) from natural matrix through a distilled water medium. Seven of the 16 PAH standards (naphthalene, acenaphthene, fluorene, anthracene, fluoranthene, pyrene, benzo[a]anthracene) are spiked on a marine muddy sediment. The samples, containing PAHs in the range of 10-20 ppm, are then aged at room temperature more than 10 days before analysis. The influence of the matrix, SPME adsorption time, pH, salt content, and SPME adsorption temperature are investigated. The reproducibility of the technique is less than 13% (RDS) for the first 6 considered PAHs and 28% (RDS) for benzo(a)anthracene with a fiber containing a 100-micron poly dimethylsiloxane coating. Linearity extended in the range of 5-50 picograms for PAHs direct injection, 5-70 picograms for PAHs in water, and 1-170 picograms for PAHs in sediment. The detection limit is estimated less than 1 microgram/kg of dry sample for the first 6 considered PAHs in sediment and 1.5 micrograms/kg of dry sample for benzo(a)anthracene using the selected ion monitoring mode in GC-MS. The recoveries of the considered PAHs are evaluated.  相似文献   

13.
The feasibility of direct-immersion (DI) solid-phase microextraction (SPME) and headspace (HS) SPME for the determination of high-ring polycyclic aromatic hydrocarbons (PAHs) (4- to 6-ring PAHs) in water and soil samples is studied. Three SPME fibers--100- and 30-microm polydimethylsiloxane (PDMS) and 85-microm polyacrylate (PA) fibers-are compared for the effective extraction of PAHs. Parameters affecting the sorption of PAHs into the fiber such as sampling time, sampling volume, and temperature are also evaluated. The extracted amounts of high-ring PAHs decrease with the decreasing of film thickness, and the 100-microm PDMS has the highest extraction efficiency than 85-microm PA and 30-microm PDMS fibers. Also, the extraction efficiency decreases with the increasing molecular weights of PAHs. Of the 10 high-ring PAHs, only fluoranthene and pyrene can reach equilibrium within 120 min at 25 degrees C for DI-SPME in a water sample. Increasing the temperature to 60 degrees C can increase the sensitivity of PAHs and shorten the equilibrium time. A 0.7- to 25-fold increase in peak area is obtained for DI-SPME when the working temperature is increased to 60 degrees C. For HS-SPME, the extraction efficiency of PAHs decrease when the headspace volume of the sampling system increases. All high-ring PAHs can be detected in a water sample by increasing the temperature to 80 degrees C. However, only 4- and 5-ring PAHs can be quantitated in a CRM soil sample when HS-SPME is used. The addition of a surfactant with high hydrophilic property can effectively enhance the sensitivity of high-ring PAHs. HS-SPME as well as DI-SPME with 100-microm PDMS or 85-microm PA fibers are shown to be suitable methods for analyzing high-ring PAHs in a water sample; however, this technique can only apply in a soil sample for PAHs having up to 5 rings.  相似文献   

14.
15.
Diana Martin 《Talanta》2007,71(2):751-757
Analysis of polycyclic aromatic hydrocarbons (PAHs) standards in model systems was carried out by solid-phase microextraction (SPME) coupled to a direct extraction device (DED) and subsequent gas chromatography/mass spectrometry (GC/MS). PAHs standard was added to gelatine systems at different concentrations. Extraction process was carried out by SPME-DED at 25 °C for 60 min. Polydimethylsiloxane 100 μm (PDMS 100 μm), divinylbenzene/polydimethylsiloxane 65 μm (DVB/PDMS 65 μm) and polyacrilate 85 μm (PA 85 μm) SPME fibres were tested. SPME-DED satisfactorily extracted PAHs with a molecular weight (MW) lower than 206 from the gelatine system. All fibres showed a good reproducibility (residual standard deviation (RSD) between 5.24% and 18.25%), linearity (regression coefficients between 0.8959 and 0.9983) and limit of detection (LOD) (between 0.008 and 0.138 ng mL−1). Presence of PAHs in different smoked meat products was also tested by SPME-DED. Different low MW PAHs were satisfactorily detected from all the foodstuffs studied. SPME-DED appears as a rapid, non-destructive technique for primary screening of low MW PAHs in solid matrixes.  相似文献   

16.
A novel solid-phase microextraction(SPME) fiber was prepared using sol–gel technology with ethoxylated nonylphenol as a fiber coating material. The fiber was employed to develop a headspace SPME–GC–MS method suitable for quantification of 13 polycyclic aromatic hydrocarbons (PAHs) in water samples. Surface characteristics of the fibers were inspected by energy dispersive X-ray (EDX) spectroscopy as well as by scanning electron microscopy (SEM). The SEM measurements showed the presence of highly porous nano-sized particles in the coating. Important parameters affecting the extraction efficiency such as extraction temperature and time, desorption conditions as well as ionic strength have been evaluated and optimized. In the next step, the validation of the new method have been performed, finding it to be specific in the trace analysis of PAHs, with the limit of detection (LOD) ranging from 0.01 to 0.5 μg L−1 and the linear range from the respective LOD to 200 μg L−1with RSD amounting to less than 8%. The thermal stability of the fibers was investigated as well and they were found to be durable at 280 °C for 345 min. Furthermore, the proposed method was successfully applied for quantification of PAHs in real water samples.  相似文献   

17.
Li  Jingkun  Liu  Yaxi  Su  Hao  Elaine Wong  Y.-L.  Chen  Xiangfeng  Dominic Chan  T.-W.  Chen  Qingfeng 《Mikrochimica acta》2017,184(10):3809-3815
Microchimica Acta - The authors describe the in-situ hydrothermal growth of a porphyrinic zirconium metal-organic framework (MOF), referred to as PCN-222(Zr), on stainless steel fibers. The...  相似文献   

18.
A new method for the determination of polycyclic aromatic hydrocarbons (PAHs) in waste water using solvent-free solid-phase microextraction (SPME) is described. The PAHs are extracted with a 100 microm polydimethylsiloxane (PDMS) fiber, desorbed in 40 microl acetonitrile and measured with LC and fluorescence detection. The detection limits of this very simple method under the given conditions (extraction from 5 ml sample, extraction time 1 h) are in the range of 1-6 ng l(-1). The standard deviations (n = 6) at a concentration level of 0.8 microg l(-1) are between 1.8 and 14.4%. The procedure was used for the determination of PAHs in contaminated water samples.  相似文献   

19.
Boron nitride nanotube (BNNT) is a novel material that shows potential ability in capturing organic pollutants. In this study, BNNTs fixed on a stainless steel fiber by a sol–gel technique were used as sorbent for solid-phase microextraction. Five polycyclic aromatic hydrocarbons with different numbers of aromatic rings were selected as target analysts. Gas chromatography coupled with tandem mass spectrometry was used for detection and quantitative determination. Under optimized conditions, the experimental results show a wide range of linearity (1 to 1,000 ng L?1), less than 10.1 % repeatability of relative standard deviation, and low detection limits (0.08 to 0.39 ng L?1). In addition, the fabricated fiber offered good thermal and chemical stability. The proposed method was successfully applied for the analysis of real water samples, and satisfactory results were obtained with relative recoveries ranging from 80.2 to 116.8 %. The results demonstrated that BNNTs could be used as sorbent for the analysis of environmental pollutants at trace levels.  相似文献   

20.
A graphene based bucky gel-coated stainless steel fiber was prepared and applied to headspace solid phase microextraction of volatile organic compounds. Graphene was mixed with an ionic liquid to produce a bucky gel that displays the attractive features of both compounds. It can be directly deposited on an etched stainless steel wire to give the fiber for use in extraction of benzene, toluene, ethylbenzene and xylene (BTEX) isomers. The presence of graphene favors the π-interaction between the sorbent and aromatic analytes. The sorbent is thermally stable up to 300 °C and can be used more than 50 times. It was characterized by field emission scanning electron microscopy, FT-IR spectroscopy and thermogravimetric analysis. Under optimized conditions, linear responses were found in the range of 0.11–5000 μg L?1 for toluene, 0.15–5000 for benzene and o-xylene, 0.17–5000 for m- and?p-xylene and 0.20–5000 for ethylbenzene. Limits of detection are between 0.03 and 0.06 μg L?1 (at an S/N ratio of 3). The run-to-run RSDs are <5.8% (for n =?6), and fiber-to-fiber RSDs are 4.1–9.2% (n =?4). The method was successfully applied to the extraction of BTEX isomers in spiked urine samples and gave recoveries between 88 and 105%.
Graphical abstract Graphene based bucky gel (G-BG) was prepared by mixing an ionic liquid with graphene. It was physically deposited on stainless steel wire. The fiber was applied to the headspace solid phase microextraction (HS-SPME) of benzene, toluene, ethylbenzene and xylenes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号