首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray diffraction has been used to study the changes in the surface properties of a montmorillonitic clay through the changes in the basal spacings of montmorillonite (SWy-2) and surfactant-intercalated organoclays. Variation in the d-spacing was found to be a step function of the surfactant concentration. High-resolution thermogravimetric analysis (HRTG) shows that the thermal decomposition of SWy-2-MMTs modified with the surfactant octadecyltrimethylammonium bromide takes place in four steps. A mass-loss step is observed at room temperature and is attributed to dehydration of adsorption water. A second mass-loss step is observed over the temperature range 87.9 to 135.5 degrees C and is also attributed to dehydration of water hydrating metal cations such as Na+. The third mass loss occurs from 178.9 to 384.5 degrees C and is assigned to a loss of surfactant. The fourth mass-loss step is ascribed to the loss of OH units through dehydroxylation over the temperature range 556.0 to 636.4 degrees C. A model is proposed in which, up to 0.4 CEC, a surfactant monolayer is formed between the montmorillonitic clay layers; up to 0.8 CEC, a lateral-bilayer arrangement is formed; and above 1.5 CEC, a pseudotrimolecular layer is formed, with excess surfactant adsorbed on the clay surface.  相似文献   

2.
Effect of surfactant agent upon the structure of montmorillonite   总被引:2,自引:2,他引:0  
The modification of sodium montmorillonite (MMT) through the incorporation of amphiphilic octadecylammonium cations in various concentrations (10–200% CEC) into the clay’s interlayer spaces has been studied. High resolution thermogravimetric analysis shows that the thermal decomposition of modified montmorillonite occurs in three steps. The first step of mass loss is related to dehydration of adsorbed water and water hydrating metal cations such as Na+. The second step of mass loss is attributed to the decomposition of surfactant. The third step is due to the loss of OH units during the dehydroxylation of the montmorillonite. The conformation of the surfactant cations in the confined space of the silicate galleries is investigated by X-ray diffraction analysis. These analyses are very important for any attempt to incorporate the organomodified MMT particles into different media for various applications such as polymer nanocomposite preparation.  相似文献   

3.
The presence of arsenate compounds in soils and mineral dump leachates is common. One potential method for the removal of the arsenates from soils is through thermal treatment. High-resolution thermogravimetric analysis has been used to follow this thermal decomposition of selected vivianite arsenates. This decomposition occurs as a series of steps. The first two steps involve dehydration with 6 mol of water lost in the first step and two in the second. The third major weight loss step occurs in the 750-800 °C temperature range with de-arsenation. The application of infrared emission spectroscopy confirms the loss of water by around 250 °C and the loss of arsenic as arsenic pentoxide is observed by the loss of AsO stretching bands at around 826 cm−1. Thermal activation of arsenic contaminated soils may provide a method of decontamination.  相似文献   

4.
A thermogravimetric study of the alunites of sodium, potassium and ammonium   总被引:1,自引:0,他引:1  
Thermogravimetry in tandem with mass spectrometry has been used to characterise the thermal decomposition of synthetic alunites of potassium, sodium and ammonium. Three mechanisms of decomposition are observed (a) dehydration, (b) dehydroxylation and (c) desulphation. The thermal decomposition of the three alunites is different. For NH4-alunite, an additional process of de-ammoniation is observed which occurs simultaneously with dehydration. Dehydroxylation takes place in a series of four steps. De-sulphation occurs for K-alunite at 680 °C in a single step in comparison with Na and NH4 alunites where de-sulphation is observed in a series of four steps. The temperature of desulphation is cation dependent. The thermal decomposition is not completed until around 800 °C.  相似文献   

5.
Thermal decomposition of jarosites of potassium,sodium and lead   总被引:1,自引:0,他引:1  
Summary Jarosites are a group of minerals formed in evaporite deposits and form a component of efflorescence. As such the minerals can function as cation and heavy metal collectors. Thermogravimetry coupled to mass spectrometry has been used to study three Australian jarosites which are predominantly K, Na and Pb jarosites. Mass loss steps of K-jarosite occur over the 130 to 330 and 500 to 622°C temperature range and are attributed to dehydroxylation and desulphation. In contrast the behaviour of the thermal decomposition of Na-jarosite shows three mass loss steps at 215 to 230, 316 to 352 and 555 to 595°C. The first mass loss step for Na-jarosite is attributed to deprotonation. For Pb-jarosite two mass loss steps associated with dehydroxylation are observed at 390 and 418°C and a third mass loss step at 531°C is attributed to the loss of SO3. Thermal analysis is an excellent technique for the study of jarosites. The analysis depends heavily on the actual composition of the jarosite.  相似文献   

6.
Thermal analysis and differential thermal analysis offers a novel means of studying the desorption of acids such as stearic acid from clay surfaces. Both adsorption and chemisorption can be distinguished through the differences in the temperature of mass losses. Increased adsorption is achievable by adsorbing onto a surfactant adsorbed montmorillonite. Stearic acid sublimes at 179 °C but when adsorbed upon montmorillonite sublimes at 207 and 248 °C. These mass loss steps are ascribed to the desorption of the stearic acid on the external surfaces of the organoclays and from the de-chemisorption from the surfactant held in the interlayer of the montmorillonite.  相似文献   

7.
Summary The disposal of used automotive tires has caused many environmental and economical problems to most countries. We propose the use of rice husk as filler for increasing the value of recycled tire rubber. Thermal degradation of both components and their sintering mixtures is presented in this paper. Thermal decomposition of rice husk occurs in various steps in the temperature range between 150 and 550°C. This complex process is the result of the overlapping of thermal decomposition of the three major constituents common in all lignocellulosic materials, i.e., hemicellulose, lignin and cellulose. Hemicellulose is degraded at temperatures between 150 and 350°C, cellulose from 275 to 380°C and lignin from 250 to 550°C. The degradation process of major constituents of scrap tires or their composites is observed at temperatures between 150 and 550°C. For composites, the addition of rice husk (maximum 25%) produces an increase in the mass loss rate. This effect is higher as the amount of rice husk increases. However, the degradation initial temperature of elastomeric matrix is not affected with addition of rice husk. Apparent kinetic parameters were also studied by the isoconversional Friedman method. We observed that the addition of rice husk produces a decrease in apparent activation energy for low conversions (up to 0.6). For higher conversions this decrease was not so clearly observed.  相似文献   

8.
Zirconium hydroxide gel has been prepared by a novel aqueous gelation process by the controlled hydrolysis of zirconium oxychloride in the presence of sodium acetate. The gel thus formed has been subjected to thermal analysis: TG, DTG, and DSC. Thermal analysis shows that the gel is continuously dehydrated in the temperature range between room temperature and 500?°C. The total mass loss relative to the initial mass is about 44.1%. Thermal analysis shows that the decomposition takes place in three stages. The gel contains absorbed and coordinated water. In the second stage of dehydration, dehydration of the Zr(OH)4 gel also takes place along with the removal of the coordinated water. The DSC analysis coupled with TG and structural information, indicate that the exothermic processes between 349 and 460?°C can be attributed to the nucleation process of the formation of tetragonal zirconia, with phase transformation at 460?°C.  相似文献   

9.
Thermal transformations of natural calcium oxalate monohydrate known in mineralogy as whewellite have been undertaken using a combination of thermal analysis and Raman microscopy with the use of a thermal stage. High resolution thermogravimetry shows that three mass loss steps occur at 162, 479 and 684 °C.Evolved gas mass spectrometry shows that water is evolved in the first step and carbon dioxide in the second and third mass loss steps. The changes in the molecular structure of whewellite can be followed by the use of the in situ Raman spectroscopy of whewellite at the elevated temperatures. The whewellite is stable up to around 161 °C, above which temperature the anhydrous calcium oxalate is formed. At 479 °C, the oxalate transforms to calcium carbonate with loss of carbon dioxide. Above 684 °C, calcium oxide is formed.  相似文献   

10.
Thermal desorption gas chromatograph mass spectrometry (TD GC/MS) was used to study weight loss in thermogravimetric analysis (TGA). The technique of thermal desorption utilizes the same temperature heating rate as the TGA to thermally desorb volatiles from solid sample matrices. Volatiles were cryo-trapped at −60 °C. After thermal desorption is complete, the trapped volatiles are separated by a GC capillary column and identified by mass spectrometry. In this study, the TD GC/MS was applied in pharmaceutical development to understand the chemical reactions attributed to the weight loss in the thermal decomposition of two dicarboxylic acid salts of a drug substance. These two salts exhibited different thermal stabilities. The thermally induced chemical reactions obtained from these two salts included dehydration and decarboxylation. Thermal degradation compounds were identified and reaction pathways for decomposition were proposed. The stability of the salts is dependent on the identity of the dicarboxylic acids from which they were generated. The information obtained from TD GC/MS helps better understand the weight loss process in thermogravimetric analysis.  相似文献   

11.
The thermal decomposition of natural iowaite of formula Mg6Fe2(Cl,(CO3)0.5)(OH)16·4H2O was studied by using a combination of thermogravimetry and evolved gas mass spectrometry. Thermal decomposition occurs over a number of mass loss steps at 60°C attributed to dehydration, 266 and 308°C assigned to dehydroxylation of ferric ions, at 551°C attributed to decarbonation and dehydroxylation, and 644, 703 and 761°C attributed to further dehydroxylation. The mass spectrum of carbon dioxide exhibits a maximum at 523°C. The use of TG coupled to MS shows the complexity of the thermal decomposition of iowaite. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
There have been a few studies on the thermal decomposition of dioptase Cu6[Si6O18]·6H2O. The results of these analyses are somewhat conflicting and the conclusions vary among these thermo-analytical studies. The objective of this research is to report the thermal analysis of dioptase from different origins and to show the mechanism of decomposition. Thermal decomposition occurs over a very wide temperature range from around 400 to 730 °C with the loss of water. Two additional mass loss steps are observed at around 793 and 835 °C with loss of oxygen. The infrared spectra of dioptase in the hydroxyl stretching region enables the hydrogen bond distances of water molecules in the dioptase structure to be calculated. The large variation in the hydrogen bond distances offers an explanation as to why the decomposition of dioptase with loss of water occurs over such a wide temperature range.  相似文献   

13.
Plumbojarosite and argentoplumbojarosite were sources of lead and silver in ancient and medieval times. The understanding of the chemistry of the thermal decomposition of these minerals is of vital importance in ‘archeochemistry’. The thermal decomposition of plumbojarosite was studied using a combination of thermogravimetric analysis coupled to a mass spectrometer. Three mass loss steps are observed at 376, 420 and 502 °C. These are attributed to dehydroxylation, loss of sulphate occurs at 599 °C, and loss of oxygen and formation of lead occurs at 844 and 953 °C. The temperatures of the thermal decomposition of the natural jarosite were found to be less than that for the synthetic jarosite. This is attributed to a depression of freezing point effect induced by impurities in the natural jarosite. Raman spectroscopy was used to study the structure of plumbojarosite. Plumbojarosites are characterised by stretching bands at 1176, 1108, 1019 and 1003 cm−1 and bending modes at 623 and 582 cm−1. Changes in the molecular structure during thermal decomposition were followed by infrared emission spectroscopy. The technique shows the loss of intensity in the hydroxyl stretching region attributed to dehydroxylation. Loss of sulphate only occurs after dehydroxylation. Lead is formed at higher temperatures through oxygen evolution.  相似文献   

14.
The non-isothermal decomposition of nickel acetate tetrahydrate in air was studied using thermogravimetry (TG)–DTG, differential scanning calorimetry (DSC) and XRD techniques. The decomposition occurs in two major steps and the final product is NiO. The dependence of mass loss on heating rates in TG measurements imply that the dehydration and hydrolysis concur at temperature below 240 °C; the apparent activation energies calculated by Flynn, Wall and Ozawa (FWO) isoconversional method indicate the existence of a consecutive process. The kinetics of the first major decomposition step (below 240 °C) was obtained with multivariate non-linear regression of four measurements at different heating rates. According to the kinetics results from non-linear regression, the dehydration reaction (F1 type with an activation energy E of 167.7 kJ/mol) goes first. After the loss of almost half of water, the retained water and acetate are linked to each other by hydrogen bonding, so dehydration and hydrolysis concur. The pathway with a lower E is related to the hydrolysis process and the other is corresponding to the dehydration process. The simulations of reactants at different heating rates were used to verify the correctness of the reaction model. With the kinetics results, the dehydration mechanism was discussed for the first time.  相似文献   

15.
Two evaporite minerals from the El Jaroso Ravine, Spain have been analysed by thermogravimetry coupled with an evolved gas mass spectrometer. X-ray diffraction results proved the evaporite minerals were a mixture of sulphates including the minerals magnesiocopiapite, coquimbite and possibly alunogen. Thermal decomposition of the unoxidised samples showed steps at 52, 99 and 143 °C confirmed by mass spectrometric results and attributed to adsorbed water, interstitial water and chemically bonded water. This evaporite mineral rock showed two higher temperature decomposition steps at 555 and 599 °C with mass losses of 19.6 and 7.8%. Slightly different temperatures for the thermal decomposition of the oxadada sample were observed at 52, 64.5 and 100 °C. Two higher temperature mass loss steps at 560.5 and 651 °C were observed for the oxidised sample. By comparison of the thermal analysis patterns of halotrichite and jarosite it can be shown that the El Jaroso samples are mineral sulphates and not halotrichite or jarosite.  相似文献   

16.
17.
The mineral sabugalite (HAl)0.5[(UO2)2(PO4)]2⋅8H2O, has been studied using a combination of energy dispersive X-ray analysis, X-ray diffraction, dynamic and controlled rate thermal analysis techniques. X-ray diffraction shows that the starting material in the thermal decomposition is sabugalite and the product of the thermal treatment is a mixture of aluminium and uranyl phosphates. Four mass loss steps are observed for the dehydration of sabugalite at 48°C (temperature range 39 to 59°C), 84°C (temperature range 59 to 109°C), 127°C (temperature range 109 to 165°C) and around 270°C (temperature range 175 to 525°C) with mass losses of 2.8, 6.5, 2.3 and 4.4%, respectively, making a total mass loss of water of 16.0%. In the CRTA experiment mass loss stages were found at 60, 97, 140 and 270°C which correspond to four dehydration steps involving the loss of 2, 6, 6 and 2 moles of water. These mass losses result in the formation of four phases namely meta(I)sabugalite, meta(II)sabugalite, meta(III)sabugalite and finally uranyl phosphate and alumina phosphates. The use of a combination of dynamic and controlled rate thermal analysis techniques enabled a definitive study of the thermal decomposition of sabugalite. While the temperature ranges and the mass losses vary due to the different experimental conditions, the results of the CRTA analysis should be considered as standard data due to the quasi-equilibrium nature of the thermal decomposition process. The online version of the original article can be found at  相似文献   

18.
Montmorillonite and Laponite loaded with different amounts of tributylammonium cations (TBAH+), up to 40 and 30 mmol, respectively, per 100 g clay, were studied by thermo-XRD-analysis. TBAH-smectites heated at 300 and 420°C exhibited basal spacings of 1.30 and 1.24 nm, attributed to smectite tactoids with low- and high-temperature-stable monolayer charcoals, respectively in the interlayers. DTA-EGA and TG of the TBAH-smectites showed four stages of mass loss labeled A, B, C and D. Stage A below 250°C, accompanied by an endothermic DTA peak, resulted from the dehydration of the clay. Mass loss stages B, C and D, at 250–380, 380–605°C and above 605°C, respectively, accompanied by exothermic DTA peaks, were due to three oxidation steps of the organic matter. In mass loss stage B (first oxidation step) mainly organic hydrogen was oxidized to H2O whereas carbon and nitrogen formed low- and high-temperature-stable charcoals. In stages C and D (second and third oxidation steps) low- and high-temperature- stable charcoals were oxidized, respectively. Dehydroxylation of the smectites occurred together with the second and third oxidation steps. Thermal mass loss at each step was calculated from the TG curves showing that in montmorillonite the percentage of high-temperature-stable charcoal from total charcoal decreased with higher TBAH+ loadings of the clay whereas in Laponite this percentage increased with higher loadings of the clay.  相似文献   

19.
Thermogravimetry combined with evolved gas mass spectrometry has been used to characterise the mineral crandallite CaAl3(PO4)2(OH)5·(H2O) and to ascertain the thermal stability of this ‘cave’ mineral. X-ray diffraction proves the presence of the mineral and identifies the products of the thermal decomposition. The mineral crandallite is formed through the reaction of calcite with bat guano. Thermal analysis shows that the mineral starts to decompose through dehydration at low temperatures at around 139 °C and the dehydroxylation occurs over the temperature range 200–700 °C with loss of the OH units. The critical temperature for OH loss is around 416 °C and above this temperature the mineral structure is altered. Some minor loss of carbonate impurity occurs at 788 °C. This study shows the mineral is unstable above 139 °C. This temperature is well above the temperature in the caves of 15 °C maximum. A chemical reaction for the synthesis of crandallite is offered and the mechanism for the thermal decomposition is given.  相似文献   

20.
Thermal analyses of synthetic and natural vivianite (Fe2+)3(PO4)2·8H2O) were determined using a high-resolution thermal analyser coupled to a mass spectrometer.Five dehydration weight loss steps were observed for the natural vivianite at 105, 138, 203, 272 and 437 °C. The first weight loss step involves the reaction (Fe2+)3(PO4)2·8H2O→(Fe2+)3(PO4)2·3H2O+5H2O. The TGA/MS for the synthetic vivianite gave similar results to that of the natural sample. Mass spectrometry shows that water is lost up to 450 °C and after this temperature oxygen is lost. Changes in the structure of vivianite were followed using infrared emission spectroscopy. A model is proposed for the dehydration of vivianite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号