首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of Na+ on γ-alumina surfaces at four coverages of Na2CO3 [5, 10, 15 and 20% (w/w)] was characterized by solid-state 23Na and 27Al nuclear magnetic resonance (NMR) spectroscopy. The experimental results suggest that two distinct adsorbed species are present on the alumina surface: surface species and surface salts. At the lower coverages of Na2CO3 (5 and 10%), the surface species is predominant, in which the Na+ cations are associated with the oxygen atoms of γ-alumina. Increasing the loading level to 15% results in the appearance of a second adsorbed species that is attributed to the surface salt, Na2CO3, deposited on the solid surface. Further adsorption of Na2CO3 leads to an increase in the amount of surface salt while the amount of surface species remains unchanged. 1H---27Al Cross-polarization magic angle spinning (CP-MAS) experiments give the evidence that some Na+ cations in the form of surface species are coordinated with the Brönsted acid sites of γ-alumina. This may be the main driving force that improves appreciably the catalytic efficiency of an Na2CO3---Al2O3 catalyst.  相似文献   

2.
以变角旋转(VAS) NMR方法考察了三配位硼的存在状态,得到其四极作用常数Cq为2.4MHz,电场梯度不对称系数η为0.0.硼引入骨架形成的酸性羟基质子的信号位于2.3ppm,1H{11B}双共振实验证实其与硼原子的关联很弱.与6.5ppm分子筛吸水峰同时出现的2.7ppm的信号也被认为是吸水的信号,与非骨架铝羟基质子的信号在同一位置,但可通过1H{27Al}双共振实验加以判别.  相似文献   

3.
The mixing of molecules adsorbed from solution to different interfaces has both industrial and academic relevance and the mixing behaviour at the interface is a key to understanding for example, that the surface tension of a mixture of two surfactants is lower than either of the two pure materials and many other effects. In this paper, we report, for the first time, the application of Solid State NMR to the study of alkane/alcohol mixtures, in a range of relative size ratio between 0 and 0.35, adsorbed onto graphite at high, multilayer coverage. Moreover, this paper evaluated, for the first time, the utility of the combined used of 1H and 2H NMR for: (i) determining the surface composition and (ii) making a theoretical approach to the sorption isotherm. A variety of preferential adsorption behaviour is reported. Preferential adsorption of the longer molecule (decane vs. heptanol) from a mixture has been observed. However, if both components are of similar length, the alcohol is preferentially adsorbed (heptanol vs. octane and octanol vs. octane). Finally, a linear relation between the relative size ratio and the amount of alcohol at monolayer coverage is observed.  相似文献   

4.
Unique combination of ionic conductivity and anisotropic physical properties in ionic liquid crystals leads to new dynamic properties exploited in modern technological applications. Structural and dynamics information at atomic level for molecules and ions in mesophases can be obtained by nuclear magnetic resonance (NMR) spectroscopy through the measurements of dipole–dipole spin couplings. While 13C–1H and 15N–1H dipolar NMR spectra can be routinely acquired in samples with natural isotopic abundance, recording 15N–13C dipolar NMR spectra is challenging because of the unfavourable combination of two rare isotopes. In the present study, an approach to measure 15N–13C dipole-dipole NMR spectra in static liquid crystalline samples with natural abundance is introduced. We demonstrate that well-resolved spectra can be recorded within 10 h of experimental time using a conventional NMR probe and a moderately strong magnetic field. The technique is applied to a thermotropic smectic mesophase formed by an ionic liquid with imidazolium-based organic cation.  相似文献   

5.
The behaviour of water and water/organic mixtures adsorbed onto activated microporous carbons or a carbon adsorbent with narrow intraparticle micropores and broad mesopores and macropores between nanoparticles was studied using low-temperature adsorption method and 1H NMR spectroscopy with layer-by-layer freezing-out of liquids at 190-273 K. These investigations revealed concentration-dependent effects of benzene, DMSO, acetone, chloroform, methane and acetonitrile on the characteristics of adsorbed water and the influence of this water on the interfacial behaviour of adsorbed organics. The influence of organics causes the structural and energetic differentiations of adsorbed water. The latter can be displaced by organics from micropores into broader pores and/or form mixture with polar solvents in meso and macropores. Freezing of adsorbed water can affect the adsorbent structure because ice crystallites have a larger size than that of liquid water droplets that lead to changes in the behaviour of adsorbed water/organic mixtures observed by the 1H NMR and adsorption methods.  相似文献   

6.
Using the minimum in the nuclear magnetic spin-lattice relaxation time versus temperature as an indicator of melting we have mapped out the solid-fluid phase boundary for ethylene adsorbed on graphite. At low coverages the ethylene forms a self-bound monolayer solid with a melting temperature of about 68 K. The molecules in the solid retain orientational mobility down to 55 K, the lowest temperatures explored.  相似文献   

7.
In many cases, high-resolution nuclear magnetic resonance (NMR) spectra are virtually impossible to obtain by con- ventional nuclear magnetic resonance methods because of inhomogeneity of magnetic field and inherent heterogeneity of sample. Although conventional intramolecular zero-quantum coherence (ZQC) can be used to obtain high-resolution spectrum in inhomogeneous field, the acquisition takes rather long time. In this paper, a spatially encoded intramolecular ZQC technique is proposed to fast acquire high-resolution NMR spectrum in inhomogeneous field. For the first time, the gradient-driven decoding technique is employed to selectively acquire intramolecular ZQC signals. Theoretical analyses and experimental observations demonstrate that high-resolution NMR spectral information can be retrieved within several scans even when the field inhomogeneity is severe enough to erase most spectral information. This work provides a new way to enhance the acquisition efficiency of high-resolution intramolecular ZQC spectroscopy in inhomogeneous fields.  相似文献   

8.
pacc:6116N,8100Thetasksofnanocarbonmorphologyand porositycharacterizationarealwaysactually.So farthetextureandmicrostructureofcarbonswere examinedonlybysuitableadsorptionmethods,whicharenotalwayseffective.The129XeNMR onadsorbedxenonwasfirstintroducedandde…  相似文献   

9.
Overhauser dynamic nuclear polarisation (DNP) represents a potentially outstanding tool to increase the sensitivity of solution and solid state NMR experiments, as well as of magnetic resonance imaging. DNP signal enhancements are strongly linked to the spin relaxation properties of the system under investigation, which must contain a paramagnetic molecule used as DNP polariser. In turn, nuclear spin relaxation can be monitored through NMR relaxometry, which reports on the field dependence of the nuclear relaxation rates, opening a route to understand the physical processes at the origin of the Overhauser DNP in solution. The contributions of dipole–dipole and Fermi-contact interactions to paramagnetic relaxation are here described and shown to be responsible to both the relaxometry profiles and the DNP enhancements, so that the experimental access to the former can allow for predictions of the latter.  相似文献   

10.
We measured the specific heat of two-dimensional films of CH4 adsorbed on graphite for several coverages and we observed broad peaks at the liquid-vapor transition. The critical temperature is estimated to be 70 ± 1 K, somewhat lower than reported in previous measurements. At intermediate coverages the liquid-vapor boundary is very flat indicating that it could be described by a 2D Ising model. We measured also for some coverages the triple temperature at 56.2 K and the commensurate-incommensurate transition at about 50 K, both in reasonable agreement with previous measurements.  相似文献   

11.
崔晓红  彭凌  张振敏  蔡淑惠  陈忠 《中国物理 B》2011,20(11):118201-118201
Radiation damping effects induced by the dominated solvent in a solution sample can be applied to suppress the solvent signal. The precession pathway and rate back to equilibrium state between solute and solvent spins are different under radiation damping. In this paper, a series of pulse sequences using radiation damping were designed for the solvent suppression in nuclear magnetic resonance (NMR) spectroscopy. Compared to the WATERGATE method, the solute signals adjacent to the solvent would not be influenced by using the radiation damping method. The one-dimensional (1D) 1H NMR, two-dimensional (2D) gCOSY, and J-resolved experimental results show the practicability of solvent suppression via radiation damping effects in 1D and 2D NMR spectroscopy.  相似文献   

12.
Solid 3He films adsorbed on graphite display remarkable magnetic properties due to quantum exchange, reduced dimensionality and frustration. We discuss the relevance of the multiple spin exchange Hamiltonian to describe these systems. Our high precision NMR data and the results of heat capacity measurements performed in other laboratories allow us to unambiguously determine the most significant multi-spin exchange frequencies. This result gives a quantitative understanding of the thermodynamical properties of solid 3He films, explaining the evolution from a pure Heisenberg behavior at high areal densities to a novel spin liquid state at low coverages.  相似文献   

13.
It is demonstrated that nuclear magnetic resonance (NMR) flow imaging on the basis of phase encoding of flow velocities as well as NMR flow tagging can be successfully employed to visualize laminar but not necessarily fully developed flow of thermally polarized hydrocarbon gases at atmospheric pressure. Gas flow in the nonconsolidated bed composed of solid glass beads was characterized by the displacement NMR spectroscopy on the basis of pulsed-field-gradient-stimulatedecho NMR technique. The effective diffusivity values and aerodynamic dispersion coefficients on the time scale from milliseconds to hundreds of milliseconds were extracted from the experimental data. In a similar experiment with the beds composed of porous silica gel grains, strong adsorption of hydrocarbon gases was observed.  相似文献   

14.
在介绍肿瘤样品代谢物的核磁共振波谱技术的研究方法的基础上,从离体组织和活体组织两个方面综述核磁共振波谱(NMR)在诊断肿瘤方面的应用进展,分析了它在肿瘤诊疗中的应用前景。在离体组织方面,人们通过1H和31P-NMR谱观测病人的体液样品、培养的细胞、切除的组织等来研究脂质、磷脂等代谢物的分布,观测肿瘤与对照组织之间的差别。其中利用组织提取物的方法能够得到分辨率较高的图谱,非常适合应用于肿瘤诊断和治疗方法的研究。高分辨魔角旋转(HR-MAS)的方法在肿瘤诊断研究方面展现出新的生命力,利用高分辨魔角旋转技术可以直接得到组织细胞中很多分子水平的代谢物结构和组成信息,因此它在癌症的早期诊断中具有很好的前景。在活体核磁共振波谱诊断肿瘤方面,主要应用1H和31P核磁共振波谱,结合MRI为非侵入性肿瘤分析提供了一种临床可用的方法。MRI与MRS技术的结合将使核磁共振波谱在医学领域有更大的应用空间。  相似文献   

15.
The anisotropic behavior of C1-C6 alkane molecules adsorbed in MFI zeolite was studied by 1H nuclear magnetic resonance (NMR) using single-pulse excitation, Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence, Hahn echo (HE) pulse sequence, and magic-angle spinning. The molecular order parameter was obtained by both static 2H NMR spectroscopy and molecular simulations. This yields an order parameter in the range of 0.28-0.42 for linear alkanes in MFI zeolite, whereas the parameter equals zero for FAU zeolite with a cubic symmetry. Thus, in the case of a zeolite with a non-cubic symmetry like MFI, the mobility of the molecules in one crystallite cannot fully average the dipolar interaction. As a consequence, transverse nuclear magnetization as revealed in the echo attenuation notably deviates from a mono-exponential decay. This information is of particular relevance for the performance of pulsed field gradient (PFG) NMR diffusion experiments, since the occurrence of non-exponential magnetization attenuation could be taken as an indication of the existence of different molecules or of molecules in different states of mobility.  相似文献   

16.
We demonstrate an experimental method for the measurement of heat transfer coefficient for a fluid system by magnetic resonance imaging. In this method, the temporal variation of thermally induced nuclear shielding is monitored and the average heat transfer coefficient is measured as a function of fluid velocity. We examine the cases of natural convection and forced convection at fluid velocity up to 0.8 m s(-1). These cases correspond to low dimensionless Biot (Bi) number where the heat transfer is limited by thermal convection. We demonstrate the NMR method for two simple geometries, a cylinder and a sphere, to experimentally determine the heat transfer coefficient (h) in two NMR imaging and spectroscopy systems through measuring three NMR parameters, the chemical shift, magnetization and spin self diffusion coefficient.  相似文献   

17.
Water soluble silicon nanoparticles were prepared by the reaction of bromine terminated silicon nanoparticles with 3-(dimethylamino)propyl lithium and characterized with liquid and solid state nuclear magnetic resonance (NMR) and photoluminescence (PL) spectroscopies. The surface site dependent 29Si chemical shifts and the nuclear spin relaxation rates from an assortment of 1H-29Si heteronuclear solid state NMR experiments for the amine coated reaction product are consistent with both the 1H and 13C liquid state NMR results and routine transmission electron microscopy, ultra-violet/visible, and Fourier transform infrared measurements. PL was used to demonstrate the pH dependent solubility properties of the amine passivated silicon nanoparticles.  相似文献   

18.
Tensorial terms of the Hamiltonian can be measured by solid-state single-crystal nuclear magnetic resonance (NMR) spectroscopy which requires a goniometer NMR probehead. Goniometer probes; however, are not standard parts of solid NMR spectrometers and are available only at a much higher price than magic-angle spinning (MAS) probeheads widely used in research. Due to requirements of MAS experiments, modern probeheads are designed for small ceramic rotors, which are 1-4 mm in diameter, to reach very high angular frequencies, so there are several older 7 mm MAS probeheads used rarely todays in NMR laboratories. In this paper, a simple method is presented how to rebuild step-by-step a 7 mm Bruker MAS probehead to be suitable for single-crystal spectroscopy. In the second part (31)P chemical shift tensors of Na(4)P(2)O(7) x 10H(2)O are determined to demonstrate the functionality of the rebuilt probehead.  相似文献   

19.
This paper presents an introduction to the study of surfaces and chemically adsorbed species with nuclear magnetic resonance (NMR) spectroscopy. The analysis is based on nuclear magnetic interactions in the solid state: dipole-dipole couplings, chemical shift anisotropy, Knight shifts, and quadrupolar splitting. The physical origins and characteristics of each interaction, as well as relative intensities for different nuclei, are discussed. In particular, emphasis is placed on the relation of these interactions to quantities of interest to studies in adsorption and catalysis: motional properties of the adsorbate, the distribution of adsorption sites, the chemical state of atoms adsorbed at the surface, electrostatic field gradients, and the metallic character of surface atoms. Techniques to observe these interactions are described; subdivided by the type of nucleus: strongly coupled nuclei (e.g. 1H, 19F), weakly coupled nuclei (e.g. 13C, 15N, 29Si, 195Pt), and quadrupolar nuclei (e.g. 2H, 14N, 27Al). The techniques described to isolate and identify the overlapping effects in the spectra include multiple-pulse spin echoing and decoupling, double-resonance irradiation, multiple-quantum excitation, and mechanical sample spinning. A review of the recent application of these techniques to studies of adsorption and surfaces illustrates the potentials and limitations. Finally, a procedure for formulating a NMR study of surface samples is proposed, with respect to sample composition and character, and the type of information desired.  相似文献   

20.
Molecular dynamics simulations of a tetracosane (n-C24H50) monolayer adsorbed on a graphite basal-plane surface show that there are diffusive motions associated with the creation and annihilation of gauche defects occurring on a time scale of approximately 0.1-4 ns. We present evidence that these relatively slow motions are observable by high-energy-resolution quasielastic neutron scattering (QNS) thus demonstrating QNS as a technique, complementary to nuclear magnetic resonance, for studying conformational dynamics on a nanosecond time scale in molecular monolayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号