首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermoelectric materials with a high figure of merit, ZT, are the essential basis to build thermoelectric generators, which can directly convert heat into electricity. Severe plastic deformation (SPD) via high-pressure torsion (HPT) was successfully applied to enhance ZT of ball-milled and hot-pressed skutterudites as well as to produce bulk nanostructured skutterudites directly from powders. SPD introduces many defects into the sample and in parallel the crystallite size is significantly reduced. During measurement-induced heating these defects anneal partially out, and the grains grow. In this work for the first time systematically the changes of the temperature-dependent electrical resistivity and of thermal expansion were compared. It could be shown that for p- and n-type skutterudites, being hot-pressed and HPT-processed as well as directly HPT-processed from compacted powder, these changes occur more or less simultaneously within the same temperature ranges. This evaluation gives a much deeper insight into the thermoelectric behavior of HPT samples under the influence of changing temperature.  相似文献   

2.
Loosely bonded (“rattling”) atoms with s2 lone pair electrons are usually associated with strong anharmonicity and unexpectedly low thermal conductivity, yet their detailed correlation remains largely unknown. Here we resolve this correlation in thermoelectric InTe by combining chemical bonding analysis, inelastic X-ray and neutron scattering, and first principles phonon calculations. We successfully probe soft low-lying transverse phonons dominated by large In1+ z-axis motions, and their giant anharmonicity. We show that the highly anharmonic phonons arise from the dynamic lone pair expression with unstable occupied antibonding states induced by the covalency between delocalized In1+ 5s2 lone pair electrons and Te 5p states. This work pinpoints the microscopic origin of strong anharmonicity driven by rattling atoms with stereochemical lone pair activity, important for designing efficient materials for thermoelectric energy conversion.  相似文献   

3.
Perovskite-type CaMn(1-x)Nb(x)O(3+/-delta) (x = 0.02, 0.05, and 0.08) compounds were synthesized by applying both a "chimie douce" (SC) synthesis and a classical solid state reaction (SSR) method. The crystallographic parameters of the resulting phases were determined from X-ray, electron, and neutron diffraction data. The manganese oxidations states (Mn(4+)/Mn(3+)) were investigated by X-ray photoemission spectroscopy. The orthorhombic CaMn(1-x)Nb(x)O(3+/-delta) (x = 0.02, 0.05, and 0.08) phases were studied in terms of their high-temperature thermoelectric properties (Seebeck coefficient, electrical resistivity, and thermal conductivity). Differences in electrical transport and thermal properties can be correlated with different microstructures obtained by the two synthesis methods. In the high-temperature range, the electron-doped manganate phases exhibit large absolute Seebeck coefficient and low electrical resistivity values, resulting in a high power factor, PF (e.g., for x = 0.05, S(1000K) = -180 microV K(-1), rho(1000K) = 16.8 mohms cm, and PF > 1.90 x 10(-4) W m(-1) K(-2) for 450 K < T < 1070 K). Furthermore, lower thermal conductivity values are achieved for the SC-derived phases (kappa < 1 W m(-1) K(-1)) compared to the SSR compounds. High power factors combined with low thermal conductivity (leading to ZT values > 0.3) make these phases the best perovskitic candidates as n-type polycrystalline thermoelectric materials operating in air at high temperatures.  相似文献   

4.
By performing extensive density functional theory calculations combined with non-equilibrium Green's function technique, we predict the rhombic porous carbon nitride nanoribbon (rPCNNR) and the vertical rPCNNR junction exhibiting high thermoelectric figure of merit (ZT) values of 0.57 and 2.1 at room temperature respectively. Theoretical results reveal that the ZT value of rPCNNR is significantly larger than that of armchair graphene nanoribbon with the almost same width (~0.035) due to the large Seebeck coefficients and the significantly decreased thermal conductance of rPCNNR, where the phonon states are blocked by the built-in porous structure and rhombic edge in rPCNNR. The ZT value is further enhanced to be 2.1 in the vertical rPCNNR junction, which is achieved by the synergy effect between the dramatically suppressed thermal conductance in in-plane direction due to the weak van der Waals interaction between two rPCNNRs, the almost unchanged Seebeck coefficients, and the good electron conductivity provided by the strong overlapping of delocalized VB- and CB-derived states in the scattering region. These presented findings highlight rPCNNR as a promising candidate in building flexible devices with high thermoelectric performance.  相似文献   

5.
Oat straw cellulose pulp was cationized in an etherification reaction with chlorocholine chloride. The cationized cellulose pulp was then mechanically disintegrated in two process steps to obtain trimethylammonium-modified nanofibrillated cellulose (TMA-NFC). The materials thus obtained were analyzed by elemental analysis, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and other techniques. A higher nitrogen content of TMA-NFC samples was found by XPS analysis than by elemental analysis, which indicates that the modification occurred mainly on the surface of cellulose fibrils. XPS also confirmed the existence of ammonium groups in the samples. SEM provided images of very fine network structures of TMA-NFC, which affirmed the positive effect of ionic charge on mechanical disintegration process. According to XRD and SEM results, no severe degradation of the cellulose occurred, even at high reaction temperatures. Because of the different properties of the cationic NFC compared to negatively charged native cellulose fibers, TMA-NFC may find broad applications in technical areas, for instance in combination with anionic species, such as fillers or dyes. Indeed, TMA-NFC seems to improve the distribution of clay fillers in NFC matrix.  相似文献   

6.
Lead sulfide, a compound consisting of elements with high natural abundance, can be converted into an excellent thermoelectric material. We report extensive doping studies, which show that the power factor maximum for pure n-type PbS can be raised substantially to ~12 μW cm(-1) K(-2) at >723 K using 1.0 mol % PbCl(2) as the electron donor dopant. We also report that the lattice thermal conductivity of PbS can be greatly reduced by adding selected metal sulfide phases. The thermal conductivity at 723 K can be reduced by ~50%, 52%, 30%, and 42% through introduction of up to 5.0 mol % Bi(2)S(3), Sb(2)S(3), SrS, and CaS, respectively. These phases form as nanoscale precipitates in the PbS matrix, as confirmed by transmission electron microscopy (TEM), and the experimental results show that they cause huge phonon scattering. As a consequence of this nanostructuring, ZT values as high as 0.8 and 0.78 at 723 K can be obtained for nominal bulk PbS material. When processed with spark plasma sintering, PbS samples with 1.0 mol % Bi(2)S(3) dispersion phase and doped with 1.0 mol % PbCl(2) show even lower levels of lattice thermal conductivity and further enhanced ZT values of 1.1 at 923 K. The promising thermoelectric properties promote PbS as a robust alternative to PbTe and other thermoelectric materials.  相似文献   

7.
Ion hydration is of pivotal importance for many fundamental processes. Various spectroscopic methods are used to study the retardation of the hydration bond dynamics in the vicinity of anions and cations. Here we introduce THz‐FTIR spectroscopy as a powerful method to answer the open questions. We show through dissection of THz spectra that we can pinpoint characteristic absorption features that can be attributed to the rattling modes of strongly hydrating ions within their hydration cages as well as vibrationally induced charge fluctuations in the case of weakly hydrating ions. Further analysis yields information on anion–cation cooperativity, the size of the dynamic hydration shell, as well as the lifetimes of these collective ion‐hydration water modes and their connecting thermal bath states. Our study provides evidence for a non‐additive behavior, thus questioning the simplified Hofmeister model. THz spectroscopy enables ion pairing to be observed and quantified at a high salt concentration.  相似文献   

8.
The influence of thermal fluctuations on the dynamics of interfacial electron transfer in sensitized TiO2-anatase semiconductors is investigated by combining ab initio DFT molecular dynamics simulations and quantum dynamics propagation of transient electronic excitations. It is shown that thermal nuclear fluctuations speed up the underlying interfacial electron transfer dynamics by introducing nonadiabatic transitions between electron acceptor states, localized in the vicinity of the photoexcited adsorbate, and delocalized states extended throughout the semiconductor material, creating additional relaxation pathways for carrier diffusion. Furthermore, it is shown that room-temperature thermal fluctuations reduce the anisotropic character of charge diffusion along different directions in the anatase crystal and make similar the rates for electron injection from adsorbate states of different character. The reported results are particularly relevant to the understanding of temperature effects on surface charge separation mechanisms in molecular-based photo-optic devices.  相似文献   

9.
在N2气保护下,采用电磁感应法制备了添加La的Bi2Te3和Bi0.5Sb1.5Te3。运用X射线粉末衍射、电感耦合等离子光谱和扫描电子显微镜对材料的物相成分和形貌进行了表征。研究了La对Bi2Te3和Bi0.5Sb1.5Te3热电材料的电导率(σ)、Seebeck系数(S)和热导率(κ)的影响。实验结果表明,添加La明显降低了2种材料的热导率,提高了热电优值(ZT),添加La的Bi0.5Sb1.5Te3的热电优值在室温超过了1。  相似文献   

10.
The surface energies of various inorganic fillers including kaolin clay, titanium dioxide, and talc were examined using inverse gas chromatography (IGC). In an earlier investigation that examined calcium carbonate fillers, dehydration by heating under a dry nitrogen purge had a substantial influence on the apolar (gammaS(LW)) and polar (gammaS(AB)) components of surface energy as measured using IGC. Using the same approach, the influence of such conditioning on several inorganic fillers used in papermaking were determined using preconditioning IGC from 100 to 300 degrees C, and sequential isothermal analysis at 100 degrees C. Results from IGC analysis of titanium dioxides (rutile and anatase) were similar to precipitated calcium carbonate (PCC) for temperatures up to 200 degrees C. PCC was significantly more energetic after preconditioning at 300 degrees C, which may indicate the onset of significant thermal decomposition that titanium dioxides will not exhibit. Kaolin clay samples had relatively high apolar surface energy similar to that of the chalk samples. Calcination gave lower gammaS(LW) values that could not be accounted for by changes in the microporous structure. More likely the differences resulted from contamination of highly energetic surface sites with adsorbates other than water. Talc samples exhibited relatively high apolar surface energies that increased with preconditioning temperature. The results provided insight into the significance of water on the final adhesion properties of fillers in the sheet structure or coating layer.  相似文献   

11.
Summary: Although titanium dioxide has a high surface area, it is not thermally stable and its surface area decreases strongly at high temperature due to phase transformation and crystal growth. To improve the thermal stability of titanium dioxide, the synthesis of mixed oxides can be an elegant approach. In this study different experimental variables for the synthesis and characterization of new titania-silica mixed oxides intended to be used as fillers have been proposed. To manufacture the mixed oxides, different tetraethylortosilicate (TEOS)/Tetrabutyl orthotitanate (TBTi) mixtures in different ratio, ethanol as solvent, and acetic acid as catalyst were used via sol-gel synthesis route. These oxides were characterized by transmission electron microscopy coupled with EDX analysis (TEM-EDX), optical microscopy, X-ray diffraction, textural properties, and pH measurements and wettability with liquids of different polarity.  相似文献   

12.
Development of a silica-based material suitable for thermoluminescence dosimetry (TLD) is described. Doped silica samples were prepared in-house using the sol–gel technique. Results from a micro-X-ray fluorescence (μ-XRF) study of Zn-doped silica have confirmed the capability of the sol–gel processing steps in producing homogeneously doped samples. The ability of sol–gel processing in producing doped samples with different dopant charge states has been illustrated in the case of copper (I)- and copper (II)-doped silica samples. The charge states of the dopants have been verified using the technique of X-ray absorption near-edge structure (XANES). X-ray diffraction (XRD) investigations have shown the structure of samples doped with erbium, copper (I) and copper (II) (listed in order of decreasing effect) to be altered by the dopants, albeit with the samples remaining in an amorphous state. Local structure studies, carried out using the method of extended X-ray absorption fine structure (EXAFS), reveal that in most cases the local environment of the dopant is similar to the respective native structure of the respective metal oxides. Conversely, in a number of cases, the dopant atoms occupy the silicon sites in the silica tetragonal geometry. Thermoluminescence (TL) studies were carried out on aluminium, copper (I), germanium, manganese, tin, and zinc-doped silica samples. Weight for weight, the most sensitive thermoluminescent material was found to be 4.0 mol% aluminium-doped silica, providing 3.5 times the TL yield of TLD100 and 5.4 times that of germanium-doped silica. The photon dose response of aluminium-doped silica was observed to be linear over the range of investigated dose, 0.5–10.0 Gy.  相似文献   

13.
为建立一种快速且无损检验热敏纸的科学有效的方法,利用能量色散型X射线荧光光谱(XRF)对38个不同商家,不同规格的热敏纸样品进行检验,首先根据每个样品所测量得到的元素的不同,将38个样品分成四大类,同时采用SPSS25.0软件中的系统聚类法对38个样品的元素数据进行聚类分析处理,结果分成了12小组,再结合SPSS25.0软件中的判别分析法对上述结果进行验证,实现了基于X射线荧光光谱结合聚类分析建立数学模型用于区分热敏纸种类的目的,该方法简单易行,可以为案件侦破提供线索、指明方向。  相似文献   

14.
The temperature dependence of the unit cell parameters of two newly identified hexagonal structure clathrate hydrates of hexamethylethane (HME) and 2,2-dimethylbutane (DMB) have been measured by X-ray powder diffraction. The thermal expansion of the two distinct crystallographic axes was found to be inequivalent. However, the coefficients of cubic expansion are comparable to that in the cubic structure I and II hydrates. The larger thermal expansivity in the clathrate hydrates relative to ice is attributed to the weakening of the host lattice due to the internal pressure generated by the rattling motions of the encaged guests.Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.  相似文献   

15.
Hybridization of multi wall carbon nanotubes (MWCNTs) with other filler in polymer matrix composites (PMC) is one of the techniques for combining different properties of fillers for making more unique composites. In this work, the hybrid filler (CNTs–dolomite) are prepared via chemical vapour deposition (CVD hybrid) and the milling method (physically hybrid). The effect of different hybrid method on properties of multi wall carbon nanotubes/dolomite hybrid filled phenolic composites were studied. Phenolic/CVD hybrid composites and phenolic/physically hybrid composites with different filler loadings were prepared using hot mounting press. The prepared samples were characterized for their thermal conductivity and hardness. The thermal conductivity was measured using the Transient Plane Source (TPS) method, using a Hot-DiskTM Thermal Constant Analyzer and the hardness was measured using Rockwell micro-hardness. The results showed that at 5% filler loading, the phenolic/CVD hybrid composites were capable of increasing the thermal conductivity and micro-hardness up to 7.22% and 101.6% respectively compared to pure phenolic.  相似文献   

16.
Charge transfer in nanostructured metal-polymer composites was studied. The frequency dependences of film conductance and susceptance were obtained at various metal concentrations. The susceptance of samples above the percolation threshold was negligibly small, which corresponded to the purely metallic conductivity type. For samples below the percolation threshold, susceptance and conductance were comparable in magnitude, which was evidence of an important role played by susceptance mechanisms. At low frequencies, the samples behaved as quasi-linear RC circuits and both the active and reactive impedance components increased linearly as the frequency grew. At high frequencies, the dispersion of susceptance, which was inversely proportional to frequency, was observed. The conclusion was drawn that the hopping conductivity mechanism through polymeric matrix surface states prevailed in films below the percolation threshold. At high frequencies, when the applied voltage period was shorter than the characteristic time of surface state recharging, these states began to be eliminated from charge transfer processes. It was suggested that a decrease in the reactive impedance component with an increase in frequency might be the reason for the dispersion observed experimentally.  相似文献   

17.
We present recent results on the characterization of highly ordered polycrystalline thin films of the charge transfer salt TTF-TCNQ (TTF=tetrathiafulvalene, TCNQ=tetracyanoquinodimethane) prepared by thermal sublimation in high vacuum under different conditions. The increase in orientation and microcrystal size as a function of substrate and annealing temperatures is addressed. A consequence of such an increase is the reduction of the conductivity activation energy, which eventually leads to the observation of the Peierls transition by resistivity measurements. X-ray absorption near edge spectroscopy studies performed with synchrotron radiation reveal directly the influence of charge transfer on unoccupied states near the Fermi level.  相似文献   

18.
The dielectric properties of composite materials consisting of a host matrix filled with spherical particles are investigated as a function of frequency by means of numerical calculations. Two different cases are analyzed: (a) composites with a conductive matrix and insulating fillers and (b) composites with an insulating matrix and conductive fillers. In both situations, dielectric dispersions due to interfacial polarization effects are observed in the dielectric spectra. In the present contribution, the characteristic frequencies of interfacial polarization effects are systematically analyzed in dependence on the volume fraction of the spherical fillers and on the conductivity values of the composite phases. The resulting scaling laws are discussed in detail.  相似文献   

19.
The effect of types of fillers on mechanical properties of rigid polyurethane composite samples was investigated. Polyurethane (PU) composites were prepared using a molasses polyol (MP, a mixture of molasses and polyethylene glycol, Mw=200) diphenylmethane diisocyanate (MDI) and fillers. The following plant particles, bamboo powder, roast bamboo powder, wood meal, coffee grounds, ground coffee bean parchment and cellulose powder, were used as fillers. The mixture of MP and fillers was reacted with MDI by adding an adequate amount of acetone as a solvent. The content of fillers was defined as the ratio of filler weight to total weight of polyol and fillers. The filler content was varied from 10 to 90 wt%. Polyurethane (PU) composites were prepared using fillers with MP. Lengths of major axis and minor axis for each particle regarded as an ellipse were measured using an optical microscope. Averages of diameter and aspect ratio were derived for each plant particle. The relationships between these average values and the mechanical properties, such as strength and elastic modulus, determined by the compression tests were investigated. The effect of filler content was estimated using the apparent volume ratio which is determined as the ratio of the apparent volume of fillers to the reciprocal values of the apparent density of samples. The master curves of the relationships between the specific values of mechanical properties and the apparent volume ratio were obtained. It was found that the compression strength and the elastic modulus for composite samples with different fillers showed maximum values at average aspect ratio around 3. It was also found that the apparent volume ratio, where the mechanical properties showed maximums, decreases with increasing aspect ratio. Using master curves, it is possible to evaluate the mechanical properties of plant particle filled polyurethane composites are described.  相似文献   

20.
Reduced charge montmorillonites (RCM) were prepared using lithium thermal treatment. The sorption of octylammonium (OA), dodecylammonium (DDA) and hexadecylammonium ions (HDA) on differently charged samples were studied. The amounts of DDA and HDA sorbed on each RCM exceed the cation exchange capacity (CEC) but that of OA exceeds only the CEC of samples with the lowest CEC. The sorption is affected not only by the layer charge but also by the formation of collapsed interlayer spaces in the lowest charged montmorillonites. X-ray measurements confirmed the decrease of the layer charge after lithium thermal treatment and the layer charge heterogeneity in RCMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号