首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The electronic structure and lattice dynamical properties of solid methane under high pressure have been studied based on density functional theory. We identify a cubic structure with space group of I43m below 14 GPa, the Pmn2(1) structure in the range of 14-21 GPa, and the P2(1)/c structure from 21 to 65 GPa. Our obtained Raman spectra of the P2(1)/c structure agree well with the typical Raman active modes in the available experimental data. At 65 GPa, methane undergoes a phase transition from P2(1)/c to Pnma. The structures with P2(1)/c and Pnma symmetries are insulating, and under any pressure studied methane always remains in molecular form. For Pnma phase, the orientational ordering of CH(4) molecules varies significantly at 79, 88, and 92 GPa, and by further increasing pressure the rotation of the molecules freezes and orientational ordering remains unchanged.  相似文献   

2.
The theoretical study of pressure-driven phase transformations by means of ab initio quantum mechanical methods, in the frame of the extended Landau approach, is considered. A specific application to AgCl is presented: the system shows, on increasing pressure, four polymorphs with rock salt- (Fmm), KOH- (P2(1)/m), TlI- (Cmcm), and CsCl- (Pmm) type structures. The method of constant-pressure enthalpy minimization was used for all phases, by fully relaxing the corresponding crystal structures. Periodic ab initio energy calculations were performed by the CRYSTAL03 code, employing a DFT-GGA-PBE functional with a localized basis set of Gaussian-type functions. The three phase transitions were predicted to occur at 3.5, 6.0, and 17.7 GPa, respectively, against pressures of 6.6, 10.8, and 17 GPa from literature experimental results. The rock salt- to KOH-type and KOH- to TlI-type displacive transformations show a weak first-order character. The TlI- to CsCl-type reconstructive transition is sharply first-order, and its kinetic mechanism was studied in detail on the basis of a P2(1)/m pathway, similar to that previously found for the rock salt- to CsCl-type transformation of NaCl. An activation enthalpy of 0.011 eV was found at the equilibrium pressure of 17.7 GPa.  相似文献   

3.
Single-crystal and polycrystalline urea samples were compressed to 12 GPa in a diamond-anvil cell. Raman-scattering measurements indicate a sequence of four structural phases occurring over this pressure range at room temperature. The transitions to the high-pressure phases take place at pressures near 0.5 GPa (phase I --> II), 5.0 GPa (II --> III), and 8.0 GPa (III --> IV). Lattice parameters in phase I (tetragonal, with 2 molecules per unit cell, space group P42(1)m (D3(2d))) and phase II (orthorhombic, 4 molecules per unit cell, space group P2(1)2(1)2(1) (D2(4))) were determined using angle-dispersive X-ray diffraction experiments. For phases III and IV, the combined Raman and diffraction data indicate that the unit cells are likely orthorhombic with four molecules per unit cell. Spatially resolved Raman measurements on single-crystal samples in phases III and IV reveal the coexistence of two domains with distinct spectral features. Physical origins of the spatial domains in phases III and IV are examined and discussed.  相似文献   

4.
The structure of N,N-dimethylethylenediammonium pentachloroantimonate(III), [(CH3)2NH(CH2)2NH3][SbCl5], NNDP, was investigated at 100 and 15 K at ambient pressure, as well as at pressures up to 4.00 GPa at room temperature in the diamond-anvil cell. The stable structure at low temperatures and low pressures consists of isolated [SbCl5]2- anions and [(CH3)2NH(CH2)2NH3]2+ cations. The inorganic anions have a distorted square pyramidal geometry. They are arranged in linear chains parallel to the c axis. In contrast to the low-temperature studies, where no phase transition was detected, pressure induces a P2(1)/c --> P2(1)/n phase transition between 0.55 and 1.00 GPa, accompanied by a doubling of the a unit-cell parameter. This solid-solid transition results from changes in the electron configuration of the Sb(III) atom and formation of the Sb-Cl bridging bonds between inorganic polyhedra to form, at approximately 1.0 GPa, isolated [Sb2Cl10]4- units consisting of [SbCl6]3- octahedra and [SbCl5]2- square pyramids connected by a common corner. The intermolecular distances continuously decrease with further increase in pressure, and at approximately 3.1 GPa, zigzag [{SbCl5}n]2n- chains containing corner-sharing [SbCl6]3- octahedra are formed. The unit-cell volume of NNDP decreases by 18.15% between room pressure and 4.00 GPa. The linear distortions of the [SbCl5]2- and [SbCl6]3- polyhedra decrease with increasing pressure and decreasing temperature and indicate a reduction in the stereochemical activity of the lone electron pair on the Sb(III) atom.  相似文献   

5.
The response of pyrene crystals to high pressure was examined using Raman and FTIR spectroscopies. Raman spectra of external and internal modes were measured up to 11 GPa. Changes in the external modes were observed at approximately 0.3 GPa, indicating the onset of a phase transition. We demonstrated that at this pressure pyrene I (P2(1)/a, 4 mol/unit cell) transforms to pyrene III (P2(1)/a, 2 mol/unit cell). Further increase of pressure produced a gradual broadening of the internal modes and an increase of fluorescence background, indicating the formation of another phase above 2.0 GPa. Irreversible chemical changes were observed upon gradual compression to 40 GPa. FTIR spectroscopy of the recovered product indicated a transformation of pyrene into an amorphous hydrogenated carbon (a-C:H) structure.  相似文献   

6.
Polar ordering has been induced by pressure in solid chloroform (trichloromethane), CHCl3, and bromoform (tribromomethane), CHBr3, obtained by isochoric and isothermal freezing in a diamond anvil cell. Structures of these new polymorphs have been determined by single-crystal X-ray diffraction, CHCl3 at 0.62 and 0.75 GPa and CHBr3 at 0.20 and 0.35 GPa. Despite different centrosymmetric structures of all low-temperature phases of CHCl3 (space group Pbcn) and CHBr3 (P6(3)/m, P1, and P3), the high-pressure phases are isostructural in space group P6(3). The polar phase of CHBr3 is formed at 295 K, already at the freezing pressure of approximately 0.1 GPa, while CHCl3 transforms from the Pbcn phase into the P6(3) phase between 0.62 and 0.75 GPa. It has been demonstrated that the electrostatic contribution to halogen...halogen and H...halogen interactions in the CHCl3 and CHBr3 molecular crystals is favorable for the polar aggregation and that this effect intensifies with increasing pressure.  相似文献   

7.
High-resolution studies of the host-guest inclusion compound n-hexadecane/urea are reported at atmospheric pressure, using both cold neutrons and x-ray diffraction. This intergrowth crystal presents a misfit parameter, defined by the ratio c(h)/c(g) (c(host)/c(guest)), which is temperature independent and irrational (γ = 0.486 ± 0.002) from 300 to 30 K. Three different structural phases are reported for this aperiodic crystal over this temperature range. The crystallographic superspaces are of rank 4 in phases I and II, whereas phase III is associated with an increase in rank to 5, with a supplementary misfit parameter (δ = 0.058 ± 0.002) that is constant throughout this phase. The superspace group of phase I is hexagonal P6(1)22(00γ) down to T(c1) = 149.5 ± 0.5 K; phase II, which persists down to T(c2) = 127.8 ± 0.5 K is orthorhombic P2(1)2(1)2(1)(00γ), and phase III is orthorhombic P2(1)2(1)2(1)(00γ)(00δ).  相似文献   

8.
The pressure-induced phase transformations in pure LiAlH4 have been studied using in situ Raman spectroscopy up to 7 GPa. The analyses of Raman spectra reveal a phase transition at approximately 3 GPa from the ambient pressure monoclinic alpha-LiAlH4 phase (P2(1)/c) to a high pressure phase (beta-LiAlH4, reported recently to be monoclinic with space group I4(1)/b) having a distorted [AlH4]- tetrahedron. The Al-H stretching mode softens and shifts dramatically to lower frequencies beyond the phase transformation pressure. The high pressure beta-LiAlH4 phase was pressure quenchable and can be recovered at lower pressures ( approximately 1.2 GPa). The Al-H stretching mode in the quenched state further shifts to lower frequencies, suggesting a weakening of the Al-H bond.  相似文献   

9.
The bilayer phase transitions of dialkyldimethylammonium bromides (2C(n)Br; n = 12, 14, 16) were observed by differential scanning calorimetry and high-pressure light-transmittance measurements. Under atmospheric pressure, the 2C(12)Br bilayer membrane underwent the stable transition from the lamellar crystal (L(c)) phase to the liquid crystalline (L(α)) phase. The 2C(14)Br bilayer underwent the main transition from the metastable lamellar gel (L(β)) phase to the metastable L(α) phase in addition to the stable L(c)/L(α) transition. For the 2C(16)Br bilayer, moreover, three kinds of phase transitions were observed: the metastable main transition, the metastable transition from the metastable lamellar crystal (L(c(2))) phase to the metastable L(α) phase, and the stable lamellar crystal (L(c(1)))/L(α) transition. The temperatures of all the phase transitions elevated almost linearly with increasing pressure. The temperature (T)-pressure (p) phase diagrams of the 2C(12)Br and 2C(14)Br bilayers were simple, but that of the 2C(16)Br bilayer was complex; that is, the T-p curves for the metastable main transition and the L(c(2))/L(α) transition intersect at ca. 25 MPa, which means the inversion of the relative phase stability between the metastable phases of L(β) and L(c(2)) above and below the pressure. Moreover, the T-p curve of the L(c(2))/L(α) transition was separated into two curves under high pressure, and as a result, the pressure-induced L(c(2P)) phase appeared in between. Thermodynamic quantities for phase transitions of the 2C(n)Br bilayers increased with an increase in alkyl-chain length. The chain-length dependence of the phase-transition temperature for all kinds of transitions observed suggests that the stable L(c(1))/L(α) transition incorporates the metastable L(c(2))/L(α) transition in the bilayers of 2C(n)Br with shorter alkyl chains, and the main-transition of the 2C(12)Br bilayer would occur at a temperature below 0 °C.  相似文献   

10.
By employing first-principles metadynamics simulations, we explore the 300 K structures of solid hydrogen over the pressure range 150-300 GPa. At 200 GPa, we find the ambient-pressure disordered hexagonal close-packed (hcp) phase transited into an insulating partially ordered hcp phase (po-hcp), a mixture of ordered graphene-like H(2) layers and the other layers of weakly coupled, disordered H(2) molecules. Within this phase, hydrogen remains in paired states with creation of shorter intra-molecular bonds, which are responsible for the very high experimental Raman peak above 4000 cm(-1). At 275 GPa, our simulations predicted a transformation from po-hcp into the ordered molecular metallic Cmca phase (4 molecules∕cell) that was previously proposed to be stable only above 400 GPa. Gibbs free energy calculations at 300 K confirmed the energetic stabilities of the po-hcp and metallic Cmca phases over all known structures at 220-242 GPa and >242 GPa, respectively. Our simulations highlighted the major role played by temperature in tuning the phase stabilities and provided theoretical support for claimed metallization of solid hydrogen below 300 GPa at 300 K.  相似文献   

11.
Angle-dispersive X-ray diffraction measurements have been performed in acanthite, Ag(2)S, up to 18 GPa in order to investigate its high-pressure structural behavior. They have been complemented by ab initio electronic structure calculations. From our experimental data, we have determined that two different high-pressure phase transitions take place at 5 and 10.5 GPa. The first pressure-induced transition is from the initial anti-PbCl(2)-like monoclinic structure (space group P2(1)/n) to an orthorhombic Ag(2)Se-type structure (space group P2(1)2(1)2(1)). The compressibility of the lattice parameters and the equation of state of both phases have been determined. A second phase transition to a P2(1)/n phase has been found, which is a slight modification of the low-pressure structure (Co(2)Si-related structure). The initial monoclinic phase was fully recovered after decompression. Density functional and, in particular, GGA+U calculations present an overall good agreement with the experimental results in terms of the high-pressure sequence, cell parameters, and their evolution with pressure.  相似文献   

12.
Our first-principles computations show that the ground state of PbTiO3 under hydrostatic pressure transforms discontinuously from P4mm to R3c at 9 GPa. Spontaneous polarization decreases with increasing pressure so that the R3c phase transforms to the centrosymmetric Rc phase at around 27 GPa. The first-order phase transition between the tetragonal and rhombohedral phases is exceptional since there is no evidence for a bridging phase. The essential feature of the R3c and Rc phases is that they allow the oxygen octahedron to increase its volume VB at the expense of the cuboctahedral volume VA around a Pb ion. This is further supported by the fact that neither the R3m nor Cm phase, which keep the VA/VB ratio constant, is a ground state within the pressure range between 0 and 40 GPa. Thus, tetragonal strain is dominant up to 9 GPa, whereas at higher pressures, efficient compression through oxygen octahedra tilting plays the central role for PbTiO3. Previously predicted pressure induced colossal enhancement of piezoelectricity in PbTiO3 corresponds to unstable Cm and R3m phases. This suggests that the phase instability, in contrast to the polarization rotation, is responsible for the large piezoelectric properties observed in systems like Pb(Zr,Ti)O3 in the vicinity of the morphotropic phase boundary.  相似文献   

13.
We present data from two room temperature synchrotron X-ray powder diffraction studies of cyclohexane up to approximately 40 and approximately 20 GPa. In the first experiment, pressure cycling was employed wherein pressure was varied up to approximately 16 GPa, reduced to 3.5 GPa, and then raised again to 40 GPa. Initially, the sample was found to be in the monoclinic phase (P12(1)/n1) at approximately 8.4 GPa. Beyond this pressure, the sample adopted triclinic unit cell symmetry (P1) which remained so even when the pressure was reduced to 3.5 GPa, indicating significant hysteresis and metastability. In the second experiment, pressure was more slowly varied, and the monoclinic unit cell structure (P12(1)/n1) was observed at lower pressures up to approximately 7 GPa, above which a phase transformation into the P1 triclinic unit cell symmetry occurred. Thus, the pressure onset of the triclinic phase may be dependent upon the pressurizing conditions. High-pressure Raman data that further emphasize a phase transition (probably into phase VI) around 10 GPa are also presented. We also have further evidence for a phase VII, which is probably triclinic.  相似文献   

14.
The chemical transformation of ammonium cyanate into urea has been of interest to many generations of scientists since its discovery by Friedrich W?hler in 1828. Although widely studied both experimentally and theoretically, several mechanistic aspects of this reaction remain to be understood. In this paper, we apply computational methods to investigate the behavior of ammonium cyanate in the solid state under high pressure, employing a theoretical approach based on the self-consistent-charges density-functional tight-binding method (SCC-DFTB). The ammonium cyanate crystal structure was relaxed under external pressure ranging from 0 to 700 GPa, leading to the identification of five structural phases. Significantly, the phase at highest pressure (above 535 GPa) corresponds to the formation of urea molecules. At ca. 25 GPa, there is a phase transition of ammonium cyanate (from tetragonal P4/nmm to monoclinic P21/m) involving a rearrangement of the ammonium cyanate molecules. This transformation is critical for the subsequent transformation to urea. The crystalline phase of urea obtained above 535 GPa also has P21/m symmetry (Z = 2). This polymorph of urea has never been reported previously. Comparisons to the known (tetragonal) polymorph of urea found experimentally at ambient pressure suggests that the new polymorph is more stable above ca. 8 GPa. Our computational studies show that the transformation of ammonium cyanate into urea is strongly exothermic (enthalpy change -170 kJ mol-1 per formula unit between 530 and 535 GPa). The proposed mechanism for this transformation involves the transfer of two hydrogen atoms of the ammonium cation toward nitrogen atoms of neighboring cyanate anions, and the remaining NH2 group creates a C-NH2 bond with the cyanate unit.  相似文献   

15.
A combination of first-principles density functional theory calculations and a search over structures is used to predict the stability of a proton-transfer modification of ammonia monohydrate with space group P4∕nmm. The phase diagram is calculated with the Perdew-Burke-Ernzerhof (PBE) density functional, and the effects of a semi-empirical dispersion correction, zero point motion, and finite temperature are investigated. Comparison with MP2 and coupled cluster calculations shows that the PBE functional over-stabilizes proton transfer phases because too much electronic charge moves with the proton. This over-binding is partially corrected by using the PBE0 hybrid exchange-correlation functional, which increases the enthalpy of P4∕nmm by about 0.6 eV per formula unit relative to phase I of ammonia monohydrate and shifts the transition to the proton transfer phase from the PBE pressure of 2.8 GPa to about 10 GPa. This is consistent with experiment as proton transfer phases have not been observed at pressures up to ~9 GPa, while higher pressures have not yet been explored experimentally.  相似文献   

16.
We present an experimental work devoted to study of the thermodynamical properties of solid methanol. We combine Fourier transform infrared spectroscopy (FTIR) and mass spectrometry (MS) to measure, for the first time, the vapor pressure of various methanol solid phases and determine their Clausius-Clapeyron equations. We perform our experiments between T = 130 K and the triple point temperature T(t) = 175.61 K. When methanol is condensed from its vapor below T(t), we observe three different solid phases depending on temperature. A condensation at T = 130 K forms a metastable phase with an enthalpy of sublimation deltaH(metastable-vapor) = 42.9 +/- 0.5 kJ.mol(-1). Upon heating, this phase transforms itself at T approximately 145 K to the alpha-phase that has an enthalpy of sublimation deltaH(alpha-vapor) = 46.9 +/- 0.2 kJ.mol(-1). Cooling the alpha-phase does not lead back to the metastable phase, whereas heating this alpha-phase leads to the beta-phase occurrence at T(alpha-beta) = 157.36 K. This latter one is stable until T(t) and has an enthalpy of sublimation deltaH(beta-vapor) = 44.2 +/- 0.5 kJ.mol(-1).  相似文献   

17.
The bisdithiazolyl radical 1a is dimorphic, existing in two distinct molecular and crystal modifications. The α-phase crystallizes in the tetragonal space group P4?2(1)m and consists of π-stacked radicals, tightly clustered about 4? points and running parallel to c. The β-phase belongs to the monoclinic space group P2(1)/c and, at ambient temperature and pressure, is composed of π-stacked dimers in which the radicals are linked laterally by hypervalent four-center six-electron S···S-S···S σ-bonds. Variable-temperature magnetic susceptibility χ measurements confirm that α-1a behaves as a Curie-Weiss paramagnet; the low-temperature variations in χ can be modeled in terms of a 1D Heisenberg chain of weakly coupled AFM S = (1)/(2) centers. The dimeric phase β-1a is essentially diamagnetic up to 380 K. Above this temperature there is a sharp hysteretic (T↑= 380 K, T↓ = 375 K) increase in χ and χT. Powder X-ray diffraction analysis of β-1a at 393 K has established that the phase transition corresponds to a dimer-to-radical conversion in which the hypervalent S···S-S···S σ-bond is cleaved. Variable-temperature and -pressure conductivity measurements indicate that α-1a behaves as a Mott insulator, but the ambient-temperature conductivity σ(RT) increases from near 10(-7) S cm(-1) at 0.5 GPa to near 10(-4) S cm(-1) at 5 GPa. The value of σ(RT) for β-1a (near 10(-4) S cm(-1) at 0.5 GPa) initially decreases with pressure as the phase change takes place, but beyond 1.5 GPa this trend reverses, and σ(RT) increases in a manner which parallels the behavior of α-1a. These changes in conductivity of β-1a are interpreted in terms of a pressure-induced dimer-to-radical phase change. High-pressure, ambient-temperature powder diffraction analysis of β-1a confirms such a transition between 0.65 and 0.98 GPa and establishes that the structural change involves rupture of the dimer in a manner akin to that observed at high temperature and ambient pressure. The response of the S···S-S···S σ-bond in β-1a to heat and pressure is compared to that of related dimers possessing S···Se-Se···S σ-bonds.  相似文献   

18.
In this work we have performed an extensive high pressure study of the condensed phases of pyridine by Raman and IR spectroscopy. We have evidenced three different polymorphs, two crystalline, and one glassy and established the pressure conditions in which they exist as stable or metastable phases by several compression/decompression experiments both on annealed and not annealed samples. Crystallization and phase transitions are found to be kinetically driven. The vibrational spectra are extremely complex due to the low symmetry of the crystals, which implies a large number of crystal components. This complexity required a careful analysis of both IR and Raman data that led to the identification of 20 out of 21 external modes expected for phase II. We did not find any conclusive indication of phase transitions on compressing phase II thus indicating that phase II is likely the stable phase at the onset pressure of the chemical transformation of pyridine. The latter starts at 18 GPa and relevant differences from the well characterized benzene reaction suggest that it is likely driven by crystal defects.  相似文献   

19.
The adsorption of H(2) in a cross-linked poly(styrene-co-divinylbenzene) (St-DVB) microporous polymer (BET surface area 920 m(2) g(-1)) is studied by volumetric and gravimetric methods, FTIR spectroscopy at variable temperature (300-14 K) and ab initio calculations. At 77 K the polymer reversibly stores up to 1.3 mass% H(2) at a pressure of 1 bar and 1.8 mass% at 10 bar. The adsorption process involves the specific interaction of H(2) with the structural phenyl rings through weak dispersive forces. The interacting molecules become IR active and give rise to vibrational and rotational-vibrational manifestations which are affected by the temperature, the contact time and the H(2) equilibrium pressure. The spectra of the H(2)/St-DVB system reported here represent the first IR evidence of the adsorption of hydrogen on unsaturated molecules. The adsorption enthalpy is evaluated by the VTIR (variable temperature IR spectroscopy) method (C. Otero Areán et al., Phys. Chem. Chem. Phys., 2007, DOI: 10.1039/b615535a) and compared with the results of ab initio calculations for the H(2)/benzene interaction and with literature data.  相似文献   

20.
We have detected a phase transition during the progress of the solid-state [2 + 2] photocycloaddition reaction of alpha-trans-cinnamic acid. The reaction was monitored using (13)C CPMAS experiments as a function of irradiation time of the parent alpha-trans-cinnamic acid, which forms the product dimer, alpha-truxillic acid. UV light centered at 350 nm was used for photoirradiation, which is in the "tail" of the absorption band of cinnamic acid. Two different crystal polymorphs of alpha-truxillic acid are observed (P2(1)/n and C2/c) at different stages of conversion of the parent crystal, assigned through (13)C NMR and powder X-ray diffraction. The two polymorphs showed clear, distinguishable patterns in the (13)C NMR spectra: a 2-peak versus 3-peak pattern corresponding to sites on the 4-membered sp (3) hybridized ring in the photoproduct. A phase transition is observed midway through the reaction, which we have assigned to the conversion of the P2(1)/n polymorph to the C2/ c polymorph of alpha-truxillic acid. The packing energy of the resultant mixed crystal of cinnamic acid and truxillic acid changes during the course of the photoreaction, which allows for the C2/c polymorph of truxillic acid to appear. Both phases have been confirmed via X-ray powder diffraction. Two techniques--differential scanning calorimetry and solid-state CPMAS NMR using increasingly fast rotational frequencies--demonstrate that the P2(1)/n phase is metastable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号