首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonacoordinate delta- and lambda-Eu and Tb complexes have been tested as imaging and reactive probes in mouse fibroblast (NIH 3T3) cells. The uptake of these complexes by the cells was assessed by fluorescence microscopy. Complex-induced DNA damage was studied by gel electrophoresis and shown to be a function of complex chirality.  相似文献   

2.
Water-soluble triple-stranded [Ln(2)(L)(3)] helicates have been successfully tested as imaging probes in human cervical adenocarcinoma cells (HeLa), the complex being not toxic and clearly staining their cytoplasm in a concentration-dependent manner.  相似文献   

3.
Four luminescent cyclometalated iridium(III) dipyridoquinoxaline complexes appended with an indole moiety [Ir(N∧C)2(N∧N)] (PF6) (HN∧C = 2-phenylpyridine, Hppy; N∧N = 2-(N-(2-(indole-3-acetamido)ethyl)aminocarbonyl)dipyrido[3,2-f:2′,3′-h]quinoxaline, dpqC2indole (1a), N∧N = 2-(N-(6-(indole-3-acetamido)hexyl)aminocarbonyl)dipyrido[3,2-f:2′,3′-h]quinoxaline, dpqC6indole (1b); HN∧C = 7,8-benzoquinoline, Hbzq, N∧N = dpqC2indole (2a), N∧N = dpqC6indole (2b)) have been synthesized and characterized. Upon irradiation, all the complexes displayed moderately intense and long-lived luminescence under ambient conditions and in 77 K glass. On the basis of the photophysical data, the emission of the complexes has been assigned to an excited state of triplet metal-to-ligand charge-transfer (3MLCT) ((dπ(Ir) → π*(N∧N)) character. Cyclic voltammetric studies revealed indole-based and iridium-based oxidations at ca. +1.10 V and +1.24 V vs. SCE, respectively, and ligand-based reductions at ca. ?1.07 to ?2.29 V vs. SCE. The interactions of the complexes with an indole-binding protein, bovine serum albumin (BSA), have been examined by emission titrations.  相似文献   

4.
Louie MW  Fong TT  Lo KK 《Inorganic chemistry》2011,50(19):9465-9471
We present the synthesis, characterization, and photophysical properties of three luminescent rhenium(I) polypyridine fluorous complexes [Re(Me(2)bpy)(CO)(3)(L)](PF(6)) (Me(2)bpy = 4,4'-dimethyl-2,2'-bipyridine; L = 3-amino-5-(N-((3-perfluorooctyl)propyl)aminocarbonyl)pyridine (py-Rf-NH(2)) (1), 3-isothiocyanato-5-(N-((3-perfluorooctyl)propyl)aminocarbonyl)pyridine (py-Rf-NCS) (2), 3-ethylthioureidyl-5-(N-((3-perfluorooctyl)propyl)aminocarbonyl)pyridine (py-Rf-TU-C(2)H(5)) (3)). The isothiocyanate complex 2 has been used to label bovine serum albumin (BSA) and glutathione (GSH). The photophysical properties of the resultant bioconjugates have been studied. The isolation of the luminescent fluorous rhenium-GSH conjugate from a mixture of 20 amino acids has been demonstrated using fluorous solid-phase extraction (FSPE). Additionally, the cytotoxicity of complexes 1 and 3 toward HeLa cells has been examined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cellular uptake properties of complex 3 have also been investigated by laser-scanning confocal microscopy.  相似文献   

5.
The relevance of hydrogen peroxide (H2O2) in biological processes has been underestimated for a long time. In recent years, various reports showed that H2O2 not only acts as a cytotoxic compound appearing in the course of oxidative stress, but also functions as an important signaling molecule. Fluorescent probes (or indicators) and nanoparticles that respond selectively to hydrogen peroxide can be applied for intracellular measurements or in vivo imaging, and are superior to electrochemical methods, e.g. in terms of spatial resolution. In contrast to previous reviews that concentrated on the adoption of different probes for certain applications, this survey highlights the basic principles of different probes in terms of their chemical design, structures and functionalities. Thus, the probes are classified according to the underlying reaction mechanism: oxidation, hydrolysis, photoinduced electron transfer, and lanthanide complexation. Other assays are based on fluorescent proteins and nanoparticles, and chemi- or bioluminescent reagents. We confine this review to probes that display a more or less distinct selectivity to hydrogen peroxide. Indicators responding to reactive oxygen species (ROS) in general, or to particular other ROS, are not covered. Finally, we briefly discuss future trends and perspectives of these luminescent reporters in biomedical research and imaging.
Figure
Luminescent probes and nanosensors are promising tools to study the role of H2O2 in cellular signal transduction processes, oxidative stress and wound healing. Advanced cell-penetrating probes paved the way to image intracellular concentrations of H2O2. This review highlights the development in the design of H2O2-sensitive probes over the past decade.  相似文献   

6.
CuS nanotubes (NTs) made up of nanoparticles were successfully prepared in large quantities in an O/W microemulsion system under low temperature. Based on the characteristics of synchronous fluorescence spectroscopy (SFS), a new method with high sensitivity and selectivity was developed for rapid determination of silver ion with functional copper sulphide (CuS) nanotubes as a fluorescence probe. Under optimal conditions, functional copper sulphide displayed a calibration response for silver ion over a wide concentration range from 1.0 × 10−10 to 1.0 × 10−8 mol L−1. The limit of detection was 0.5 × 10−10 mol L−1 and the relative standard deviation of eight replicate measurements for the highest concentration (1 × 10−8 mol L−1) was 3%. Compared with several fluorescence methods, the proposed method had a wider linear range and improved the sensitivity. Furthermore, the concentration dependence of the synchronous fluorescence intensity is effectively described by a Langmuir-type binding isotherm.  相似文献   

7.
Lysosomes are vital organelles in physiological processes, as they receive and degrade macromolecules from the secretory and endocytic procedures. Evidences have shown that lysosomes were related to oncogenic activation and cancer progression, so lysosomes targeting and imaging probes make them convenient to be observed. In this study, a lysosome specific probe W-7 was designed and synthesized via convenient one-pot reaction and Heck reaction. This probe was derived from Tröger's base with a dimethylaminomethyl end group. The optical properties of this compound were measured. W-7 also showed two-photon absorption (TPA) effect by using laser excitation at the wavelength of infrared light. In vivo experiment, W-7 showed high specificity and selectivity for lysosomes in living cells (HeLa cells, MRC-5 cells and NRK cells), compared with LT Red, GT Red and MT Red (R = 0.96). Two-photon fluorescence images of HeLa cells stained by W-7 were obtained. And high resolution 3D reconstruction of lysosomes in one HeLa cell was provided by using two-photon confocal microscopy. The anantioseparation of racemic W-7 was carried out by chiral-HPLC, and the two enantiomers showed no significant difference in lysosomes imaging.  相似文献   

8.
New salen compounds have been developed to possess two pendant azo dye chromophores. The two-photon absorption properties have been observed which result from the chromophores. The additive property has been found to exist as a result of no detrimental dipole-dipole interaction between chromophores.  相似文献   

9.
10.
A glucopyranose functionalized star-shaped oligomer, N-tris{4,4',4'-[(1E)-2-(2-{(E)-2-[4-(benzo[d]thiazol-2-yl)phenyl]vinyl}-9,9-bis(6-2-amido-2-deoxy-1-thio-β-D-glucopyranose-hexyl)-9H-fluoren-7-yl)vinyl]phenyl}phenylamine (TVFVBN-S-NH(2)), is synthesized for two-photon fluorescence imaging. In water, TVFVBN-S-NH(2) self-assembles into nanoparticles with an average diameter of ~49?nm and shows a fluorescence quantum yield of 0.21. Two-photon fluorescence measurements reveal that TVFVBN-S-NH(2) has a two-photon absorption cross-section of ~1100 GM at 780?nm in water. The active amine group on the glucopyranose moiety allows further functionalization of TVFVBN-S-NH(2) with folic acid to yield TVFVBN-S-NH(2) FA with similar optical and physical properties as those for TVFVBN-S-NH(2). Cellular imaging studies reveal that TVFVBN-S-NH(2) FA has increased uptake by MCF-7 cells relative to that for TVFVBN-S-NH(2), due to specific interactions between folic acid and folate receptors on the MCF-7 cell membrane. This study demonstrates the effectiveness of glycosylation as a molecular engineering strategy to yield water-soluble materials with a large two-photon absorption (TPA) cross-section for targeted cancer-cell imaging.  相似文献   

11.
A new chiral binaphthyl salen ligand with rigid polyaromatic sidearms gives monohelical complexes (Fe(II) and Zn(II)) of predetermined handedness.  相似文献   

12.
[reaction: see text] Four pH-sensitive fluorescence probes are presented which consist of an anthracene fluorophore and a pi-conjugated oxazoline, benzoxazole, or pyridine substituent. The protonation of the heterocycles increases their acceptor properties and results in significant red-shifts of the absorption and emission maxima of the anthracene chromophore. The comparison between 2-[2'-(6'-methoxyanthryl)]-4,4-dimethyl-2-oxazoline and 2-[2'-(anthryl)]-4,4-dimethyl-2-oxazoline reveals that the donor-acceptor substitution pattern of the fluorophore is not required to achieve a red shift upon protonation. The benzoxazole and pyridine substituents offer a particular advantage due to their persistence under acidic conditions. Thus, these compounds may be used as efficient pH-sensitive fluorescence switches. Nevertheless, the switching of benzoxazole 2c requires relatively strong acidic conditions. The anthrylpyridinium exhibits a red-shifted emission in chloroform; however, it is nonfluorescent in aqueous or alcoholic solution. Although the oxazoline is not persistent under permanent acidic conditions, this heterocycle may be useful as a substituent in fluorescence indicators since it may be used to detect acid concentrations of 10(-4)-10(-5) M, which are close to the biologically relevant range.  相似文献   

13.
The interaction of oligochitosan and tobacco cells has been investigated by fluorometric method using two Eu3+ complexes as the probes in this work. Based on the reaction of tobacco cells with oligochitosan conjugated to a strongly fluorescent Eu3+ complex 4,4′-bis(1″,1″,1″,2″,2″,3″,3″-heptafluoro-4″,6″-hexanedion-6″-yl)chlorosulfo-o-terphenyl-Eu3+ (oligochitosan-BHHCT-Eu3+ conjugate), the binding kinetic process of oligochitosan-tobacco cells was fluorescently imaged. The results indicate that oligochitosan can be specifically bound to the walls as well as the membranes of tobacco cells. A sensitive and selective Eu3+ complex luminescence probe specific for singlet oxygen, [4′-(10-methyl-9-anthryl)-2,2′:6′,2″-terpyridine-6,6″-diyl]bis(methylenenitrilo)tetrakis (acetate)-Eu3+, was used for developing a new time-resolved fluorescence assay method for the determinations of indole-3-acetic acid (IAA) and peroxidase produced in the cells during the interaction of oligochitosan and tobacco cells. The assays are sensitive with the detection limits of 32 nM for IAA, and 1.2 nM for peroxidase, respectively. The concentration changes of IAA and peroxidase induced by oligochitosan in tobacco cells reveal that oligochitosan can effectively induce the increase of IAA concentration, accompanied by the decrease of peroxidase concentration. These results give a primary and reliable evidence to explain the growth-promoting mechanism of oligochitosan on the plants at molecular level.  相似文献   

14.
Four luminescent ruthenium(II) polypyridine estradiol complexes [Ru(NwedgeN)2(bpy-estradiol)](PF6)2 (NwedgeN = 2,2'-bipyridine (bpy), 4,7-diphenyl-1,10-phenanthroline (Ph2-phen); bpy-estradiol = 5-(4-(17alpha-ethynylestradiolyl)phenyl)-2,2'-bipyridine (bpy-ph-est), 4-(N-(6-(4-(17alpha-ethynylestradiolyl)benzoylamino)hexyl)aminomethyl)-4'-methyl-2,2'-bipyridine (mbpy-C6-est)) have been designed as new luminescent biological probes. The lipophilicity and photophysical and electrochemical properties of these complexes have been investigated. Upon photoexcitation, all the complexes exhibited intense and long-lived triplet metal-to-ligand charge-transfer (3MLCT) (dpi(Ru) --> pi*(diimine)) emission in fluid solutions at 298 K and in low-temperature glass. The binding of the complexes to estrogen receptor-alpha (ERalpha) has been studied by emission titrations. The Ph2-phen complexes showed emission enhancement and increased lifetimes upon binding to the protein. Additionally, the cytotoxicity of the complexes toward the HeLa cell line has been examined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay and the IC50 values ranged from 83.1 to 166.6 microM (cisplatin showed an IC50 value of 34.3 microM under the same experimental conditions). Furthermore, the cellular uptake of the complexes has been investigated by flow cytometry and laser-scanning confocal microscopy.  相似文献   

15.
Reaction-based fluorescent probes for monoamine oxidases A and B are developed based on a new two-photon absorbing compound and its precursor. The probes show turn-on fluorescence response to the enzymes owing to the two-photon absorbing compound produced by the enzymatic activity, as monitored by one- as well as two-photon microscopy for the first time.  相似文献   

16.
Applying the fluorescent carbon dots as smart materials in anticancer therapy is of great interest. However, carbon dots for multimodal synergistic anticancer therapy, especially for the triple modality, is rarely reported. Herein, we successfully synthesized OCDs by citric acid and(1R,2S)-2-amino-1,2-diphenylethan-1-ol, which show aggregation-induced emission property and two-photon fluorescence imaging. Meanwhile, OCDs are ideal photosensitizers for photothermal therapy under 808 nm and Type Ⅰ...  相似文献   

17.
Huang C  Qu J  Qi J  Yan M  Xu G 《Organic letters》2011,13(6):1462-1465
A novel two-photon fluorescence probe for Zn(2+) derived from dicyanostilbene as a two-photon fluorophore and 4-(pyridine-2-ylmethyl)piperazine as a novel Zn(2+) ligand was developed. The probe shows a 72.5-fold fluorescence enhancement in response to Zn(2+), a large two-photon action cross-section (580 GM), a noncytotoxic effect, and pH insensitivity in the biologically relevant range, and its dissociation constant (K(d)(TP)) is 0.52 ± 0.01 μM. The probe can selectively detect free Zn(2+) ions in live cells for 1500 s or so and in living tissues at a depth of 80-150 μm without interference from other metal ions and the membrane-bound probes.  相似文献   

18.
Modern fluorescence-imaging methods promise to unveil organelle dynamics in live cells. Phototoxicity, however, has become a prevailing issue when boosted illumination applies. Mitochondria are representative organelles whose research heavily relies on optical imaging, yet these membranous hubs of bioenergy are exceptionally vulnerable to photodamage. We report that cyclooctatetraene-conjugated cyanine dyes (PK Mito dyes), are ideal mitochondrial probes with remarkably low photodynamic damage for general use in fluorescence cytometry. In contrast, the nitrobenzene conjugate of Cy3 exhibits enhanced photostability but unaffected phototoxicity compared to parental Cy3. PK Mito Red, in conjunction with Hessian-structural illumination microscopy, enables 2000-frame time-lapse imaging with clearly resolvable crista structures, revealing rich mitochondrial dynamics. In a rigorous stem cell sorting and transplantation assay, PK Mito Red maximally retains the stemness of planarian neoblasts, exhibiting excellent multifaceted biocompatibility. Resonating with the ongoing theme of reducing photodamage using optical approaches, this work advocates the evaluation and minimization of phototoxicity when developing imaging probes.

Cyclooctatetraene-conjugated cyanine dyes represent an effective strategy to improve biocompatibility under light in live-cell fluorescence imaging and analysis of mitochondria.  相似文献   

19.
Optical imaging provides an indispensable way to locate tumors in their early stages with high sensitivity and signal to background ratio. A heptamethine cyanine based fluorophore that emits both single photon near-infrared fluorescence and two-photon deep red fluorescence under physiological conditions was developed. Linear and nonlinear photophysical properties of this fluorophore were investigated and it demonstrated the capability to label lysosomes in cancer cells. The advantages of this fluorophore, including tolerable cytotoxicity, high fluorescence quantum yield, and the ability to emit both near-infrared single photon fluorescence and deep red two photon fluorescence in aqueous solution, give it potential to be used in intra-operatively optical image-guided tumor excision followed by two-photon fluorescence microscopy biopsy analysis after a single administration.  相似文献   

20.
Be a powerful technique for convenient detection of pH change in living cells, especially at subcellular level, fluorescent probes has attracted more and more attention. In this work, we designed and synthesized three rhodamine lactam modulated fluorescent probes RS1, RS2 and RS3, which all respond sensitively toward weak acidity (pH range 4–6) via the photophysical property in buffer solution without interference from the other metal ions, and they also show ideal pKa values and excellent reversibility. Particularly, by changing the lone pair electrons distribution of lactam-N atom with different conjugations, RS2 and RS3 exhibit high quantum yield, negligible cytotoxicity and excellent permeability. They are suitable to stain selectively lysosomes of tumor cells and monitor its pH changes sensitively via optical molecular imaging. The above findings suggest that the probes we designed could act as ideal and easy method for investigating the pivotal role of H+ in lysosomes and are potential pH detectors in disease diagnosis through direct intracellular imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号