首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The equations of magnetostatic equilibria for a plasma in agravitational field are investigated analytically. For equilibriawith an ignorable spatial coordinate, the equations reduce toa single nonlinear elliptic equation for the magnetic potentialu known as the Grad-Shafranov equation. By specifying the arbitraryfunctions in this equation, a Liouville equation is obtained.Bäcklund transformations are described and applied to obtainexact solutions for the Liouville equation modelling an isothermalmagnetostatic atmosphere, in which the current density J isproportional to the exponential of the magnetic potential andmoveover falls off exponentially with distance vertical to thebase with an e-folding distance equal to the gravitational scaleheight.  相似文献   

2.
It is shown that the behavior of an arbitrary wave propagating in the field of a nonrotating charged black hole is defined (with the use of quadratures) by four functions. Each of these functions obeys its second order equation of the wave kind. Short electromagnetic waves falling onto a black hole are reflected by its field in the form of gravitational and electromagnetic waves whose amplitude was explicitly determined. In the case of the wave carrying rays winding around the limit cycle the reflection and transmission coefficients were obtained in the form of analytic expressions.Various physical processes taking place inside, as well as outside a collapsing star, may induce perturbations of the gravitational, electromagnetic and other fields, and lead to the appearance in the surrounding space of waves of various kinds which propagate over a distorted background and are dissipated along its inhomogeneities.In the absence of rotation and charge in a star, the analysis of small perturbations of the gravitational fields is based on the system of Einstein equations linearized around the Schwarzschild solution. In [1, 2] this system of equations, after expansion of perturbations in spherical harmonics and Fourier transformation with respect to time, was reduced to two independent linear ordinary differential equations of second order of the form of the stationary Schrödinger equation for a particle in a potential force field. Each of these equations defines one of two possible independent perturbation kinds: “even” and “odd” (the different behavior of spherical tensor harmonics at coordinate inversion is the deciding factor in the determination of the kind of perturbation [1, 2]). Although these equations were derived with the superposition on the perturbations of the metric of specific coordinate conditions, they define, as shown in [4], the behavior of invariants of the perturbed gravitational field, which imparts to the potential barriers appearing in these equations an invariant meaning.The system of Maxwell equations on the background of Schwarzschild solution also reduces to similar equations, which differ from the above only by the form of potential barriers appearing in these [5].In the presence in the unperturbed solution of a strong electromagnetic field the gravitational and electromagnetic waves interact with each other, and transmutation takes place. The train of short periodic electromagnetic waves generates the accompanying train of gravitational waves. This phenomenon was first analyzed in [6] on and arbitrary background. It was shown in [7, 8] that dense stars surrounded by hot plasma may acquire a charge owing to splitting of charges by radiation pressure and the “sweeping out” of positrons nascent in vapors in strong electrostatic fields. The interaction of waves becomes particularly clearly evident in the neighborhood of black holes which may serve as “valves” by maintaining equilibrium between the relict electromagnetic and gravitational radiation in the Universe. Rotation of black holes intensifies this effect [6].If a nonrotating star possesses an electrostatic charge, the definition of perturbations of the electromagnetic and gravitational fields must be based on the complete system of Einstein-Maxwell equations linearized around the Nordström-Reissner solution. (Small perturbations of electromagnetic field outside a charged black hole were considered in [9, 10] on the basis of the system of Maxwell equations on a “rigid” background of the Nordström-Reissner solution, without taking into account the interconvertibility of gravitational and electromagnetic waves, which materially affects their behavior in the neighborhood of a charged black hole). Here this system of equations which define the interacting gravitational and electromagnetic perturbations are reduced to four independent second order differential equations, two for each kind of perturbations (an importsnt part is played here by the coordinate conditions imposed on the perturbations of the metric, proposed by the authors in [4]). Perturbation components of the metric and of the electromagnetic field are determined in quadratures by the solutions of these equations. If the charge of a star tends to vanish, two of the derived equations convert to equations for gravitational waves on the background of the Schwarzschild solution [1, 2], while the twoothers become equations which are equivalent to Maxwell solutions on the same background. The short-wave asymptotics of derived equations is determined throughout including the neighborhood of the limit cycle for the wave carrying rays. These solutions far away from the point of turn coincide with those obtained in [6] for any arbitrary background. Approximation of geometric optics does not provide correct asymptotics for impact parameters of rays which are close to critical for which the Isotropie and geodesic parameters wind around the limit cycle. This case is investigated below.A similar situation in the Schwarzschild field was analyzed in [11], where analytic expressions for the wave reflection and transmission coefficients were determined, and the integral radiation stream trapped by a black hole produced by another radiation component of the dual system was calculated.  相似文献   

3.
G. Hoshoudy  N. El‐Ansary 《PAMM》2002,1(1):306-307
Effect of the viscosity on Rayleigh‐Taylor instability for two contiguous semi‐infinite fluids, in presence of a homogeneous horizontal magnetic field permeating both fluids is investigated. These fluids are incompressible, are arranged in horizontal strata and infinitely conducting. Only the linear terms in the magnetohydrodynamic (MHD) equations are considered. The gravitational acceleration was constant. The dispersion relation that defines the growth rate σ for the system has been defined as a function of the physical parameters of the system and was solved numerically.  相似文献   

4.
The tanh method and the extended tanh method are used for handling the Zhiber–Shabat equation and the related equations: Liouville equation, sinh-Gordon equation, Dodd–Bullough–Mikhailov (DBM) equation, and Tzitzeica–Dodd–Bullough equation. Travelling wave solutions of different physical structures are formally derived for each equation.  相似文献   

5.
This paper is concerned with the effect of slowly changing the length of a tank on the nonlinear standing waves (free vibrations) and resonant forced oscillations of shallow water in the tank. The analysis begins with the Boussinesq equations. These are reduced to a nonlinear differential-difference equation for the slow variation of a Riemann invariant on one end. Then a multiple scale expansion yields a KdV equation with slowly changing coefficients for the standing wave problem, which is reduced to a KdV equation with a variable dispersion coefficient. The effect of changing the tank length on the number of solitons in the tank is investigated through numerical solutions of the variable coefficient KdV equation. A KdV equation which is “periodically” forced and slowly detuned results for the passage through resonance problem. Then the amplitude-frequency curves for the fundamental resonance and the first overtone are given numerically, as well as solutions corresponding to multiple equilibria. The evolution between multiple equilibria is also examined.Received: December 16, 2003  相似文献   

6.
The one-dimensional (1D) generalized modified complex Ginzburg–Landau (MCGL) equation for the traveling wave systems is analytically studied. Exact solutions of this equation are obtained using a method which combines the Painlevé test for integrability in the formalism of Weiss–Tabor–Carnevale and Hirota technique of bilinearization. We show that pulses, fronts, periodic unbounded waves, sources, sinks and solution as collision between two fronts are the important coherent structures that organize much of the dynamical properties of these traveling wave systems. The degeneracies of the 1D generalized MCGL equation are examined as well as several of their solutions. These degeneracies include two important equations: the 1D generalized modified Schrödinger equation and the 1D generalized real modified Ginzburg–Landau equation. We obtain that the one parameter family of traveling localized source solutions called “Nozaki–Bekki holes” become a subfamily of the dark soliton solutions in the 1D generalized modified Schrödinger limit.  相似文献   

7.
This paper is concerned with the effect of slowly changing the length of a tank on the nonlinear standing waves (free vibrations) and resonant forced oscillations of shallow water in the tank. The analysis begins with the Boussinesq equations. These are reduced to a nonlinear differential-difference equation for the slow variation of a Riemann invariant on one end. Then a multiple scale expansion yields a KdV equation with slowly changing coefficients for the standing wave problem, which is reduced to a KdV equation with a variable dispersion coefficient. The effect of changing the tank length on the number of solitons in the tank is investigated through numerical solutions of the variable coefficient KdV equation. A KdV equation which is “periodically” forced and slowly detuned results for the passage through resonance problem. Then the amplitude-frequency curves for the fundamental resonance and the first overtone are given numerically, as well as solutions corresponding to multiple equilibria. The evolution between multiple equilibria is also examined.  相似文献   

8.
This article addresses the questions of existence, uniqueness, and finite element approximation (including some computational aspects) of solutions to the equations of steady-state magnetohy-drodynamic (MHD) when buoyancy effects due to temperature differences in the flow cannot be neglected. We couple the MHD equations to the heat equation and employ the well-known Boussinesq approximation. We consider the equations posed on a bounded three-dimensional domain. The boundary conditions for the velocity are of Dirichlet type; the boundary conditions for the temperature are mixed (of Dirichlet type and of Neumann type); we also specify the normal component of the magnetic field and tangential component of the electric field on the boundary. We point out that these problems are relevant to many physical phenomena such as the cooling of nuclear reactors by electrically conducting fluids, continuous metal casting, crystal growth, and semi-conductor manufacture. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
Multiple soliton solutions for the (2 + 1)‐dimensional Sawada–Kotera and the Caudrey–Dodd–Gibbon equations are formally derived. Moreover, multiple singular soliton solutions are obtained for each equation. The simplified form of Hirota's bilinear method is employed to conduct this analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, we describe and analyze two models that were recently proposed for modeling generalized von Kármán plates and generalized Marguerre–von Kármán shallow shells.

First, we briefly review the “classical” von Kármán and Marguerre–von Kármán equations, their physical meaning, and their mathematical justification. We then consider the more general situation where only a portion of the lateral face of a nonlinearly elastic plate or shallow shell is subjected to boundary conditions of von Kármán type, while the remaining portion is free. Using techniques from formal asymptotic analysis, we obtain in each case a two-dimensional boundary value problem that is analogous to, but is more general than, the classical equations.

In particular, it is remarkable that the boundary conditions for the Airy function can still be determined on the entire boundary of the nonlinearly elastic plate or shallow shell solely from the data.

Following recent joint works, we then reduce these more general equations to a single “cubic” operator equation, which generalizes an equation introduced by Berger and Fife, and whose sole unknown is the vertical displacement of the shell. We next adapt an elegant compactness method due to Lions for establishing the existence of a solution to this operator equation.  相似文献   


11.
We study the well-posedness theory for the MHD boundary layer. The boundary layer equations are governed by the Prandtl-type equations that are derived from the incompressible MHD system with non-slip boundary condition on the velocity and perfectly conducting condition on the magnetic field. Under the assumption that the initial tangential magnetic field is not zero, we establish the local-i-time existence, uniqueness of solutions for the nonlinear MHD boundary layer equations. Compared with the well-posedness theory of the classical Prandtl equations for which the monotonicity condition of the tangential velocity plays a crucial role, this monotonicity condition is not needed for the MHD boundary layer. This justifies the physical understanding that the magnetic field has a stabilizing effect on MHD boundary layer in rigorous mathematics. © 2018 Wiley Periodicals, Inc.  相似文献   

12.
We study the dynamics of a piecewise (in time) distributed optimal control problem for Generalized MHD equations which model velocity tracking coupled to magnetic field over time. The long-time behavior of solutions for an optimal distributed control problem associated with the Generalized MHD equations is studied. First, a quasi-optimal solution for the Generalized MHD equations is constructed; this quasi-optimal solution possesses the decay (in time) properties. Then, some preliminary estimates for the long-time behavior of all solutions of Generalized MHD equations are derived. Next, the existence of a solution of optimal control problemis proved also optimality system is derived. Finally, the long-time decay properties for the optimal solutions is established.  相似文献   

13.
In this paper, the authors consider the Navier–Stokes equations for steady compressible viscous flow in three-dimensional cylindrical domain. A differential inequality for appropriate energy associated with the solutions of the Navier–Stokes isentropic flow in semi-infinite pipe is derived, from which the authors show a Phragmén–Lindelöf alternative result, i.e. the solutions for steady compressible viscous N–S flow problem either grow or decay exponentially as the distance from the entry section tends to infinity. In the decay case, the authors indicate how to bound explicitly the total energy in terms of data.  相似文献   

14.
Magnetohydrodynamic (MHD) equations are derived with the finite electron mass taken into account. The low-frequency spectrum of a cold two-component plasma can be described using these equations. In the linear approximation, the MHD equations lead to results coinciding with those of multifluid hydrodynamics. An exact solution to the generalized MHD equations is obtained as a stationary nonlinear wave. A soliton-like solution is found for a wide range of Mach numbers and external magnetic field intensities. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 116, No. 3, pp. 349–361, September, 1998.  相似文献   

15.
We obtain a system of integral equations for the spinor amplitude of a wave packet describing a massive neutral Dirac particle in a curved space–time with an arbitrary geometry. This equation permits describing the spin dynamics of fermions in gravitational fields adequately to the quantum nature of spin. We consider a specific example of the Kerr–Schild metric. We also discuss the problem of massive neutrino oscillations in an external gravitational field.  相似文献   

16.
Pham Loi Vu 《Acta Appl Math》1997,49(2):107-149
The paper deals with the initial-value problems for the Korteweg–de Vries (KdV) equations on the half-line and on the whole-line for complex-valued measurable and exponentially decreasing potentials. The time evolution equation for the reflection coefficient is derived and then a one-to-one correspondence between the scattering data and the solution of the KdV equation is shown. Families of exact solutions of the KdV equation are represented for the class of reflection-free potentials, in which the inverse scattering problem associated with the KdV equation can be solved exactly. Some helpful examples of soliton solutions of the KdV equation are provided.  相似文献   

17.
Magnetohydrodynamic (MHD) flows are governed by Navier–Stokes equations coupled with Maxwell equations through coupling terms. We prove the unconditional stability of a partitioned method for the evolutionary full MHD equations, at high magnetic Reynolds number, written in the Elsässer variables. The method we analyze is a first-order one-step scheme, which consists of implicit discretization of the subproblem terms and explicit discretization of the coupling terms.  相似文献   

18.
A mathematical model is given for the magnetohydrodynamic (MHD) pipe flow as an inner Dirichlet problem in a 2D circular cross section of the pipe, coupled with an outer Dirichlet or Neumann magnetic problem. Inner Dirichlet problem is given as the coupled convection‐diffusion equations for the velocity and the induced current of the fluid coupling also to the outer problem, which is defined with the Laplace equation for the induced magnetic field of the exterior region with either Dirichlet or Neumann boundary condition. Unique solution of inner Dirichlet problem is obtained theoretically reducing it into two boundary integral equations defined on the boundary by using the corresponding fundamental solutions. Exterior solution is also given theoretically on the pipe wall with Poisson integral, and it is unique with Dirichlet boundary condition but exists with an additive constant obtained through coupled boundary and solvability conditions in Neumann wall condition. The collocation method is used to discretize these boundary integrals on the pipe wall. Thus, the proposed procedure is an improved theoretical analysis for combining the solution methods for the interior and exterior regions, which are consolidated numerically showing the flow behavior. The solution is simulated for several values of problem parameters, and the well‐known MHD characteristics are observed inside the pipe for increasing values of Hartmann number maintaining the continuity of induced currents on the pipe wall.  相似文献   

19.
Abstract. A Riccati equation involving a parameter and symbolic computation are used to uni-formly construct the different forms of travelling wave solutions for nonlinear evolution equa-tions. It is shown that the sign of the parameter can be applied in judging the existence of vari-ous forms of travelling wave solutions. An efficiency of this method is demonstrated on some e-quations,which include Burgers-Huxley equation,Caudrey-Dodd-Gibbon-Kawada equation,gen-eralized Benjamin-Bona-Mahony equation and generalized Fisher equation.  相似文献   

20.
We investigate the mathematical properties of a model for the simulation of large eddies in turbulent, electrically conducting, viscous, incompressible flows. We prove existence and uniqueness of solutions for the simplest (zeroth) closed MHD model (1.7), we show that its solutions converge to the solution of the MHD equations as the averaging radii converge to zero, and derive a bound on the modeling error. Furthermore, we show that the model preserves the properties of the 3D MHD equations: the kinetic energy and the magnetic helicity are conserved, while the cross helicity is approximately conserved and converges to the cross helicity of the MHD equations, and the model is proven to preserve the Alfvén waves, with the velocity converging to that of the MHD, as δ1,δ2 tend to zero. We perform computational tests that verify the accuracy of the method and compare the conserved quantities of the model to those of the averaged MHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号